Bootstrapping through discrete convolutional methods

IF 1.3 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jared M. Clark, Richard L. Warr
{"title":"Bootstrapping through discrete convolutional methods","authors":"Jared M. Clark,&nbsp;Richard L. Warr","doi":"10.1002/asmb.2809","DOIUrl":null,"url":null,"abstract":"<p>Bootstrapping was designed to randomly resample data from a fixed sample using Monte Carlo techniques. However, the original sample itself defines a discrete distribution. Convolutional methods are well suited for discrete distributions, and we show the advantages of utilizing these techniques for bootstrapping. The discrete convolutional approach can provide exact numerical solutions for bootstrap quantities, or at least mathematical error bounds. In contrast, Monte Carlo bootstrap methods can only provide confidence intervals which converge slowly. Additionally, for some problems the computation time of the convolutional approach can be dramatically less than that of Monte Carlo resampling. This article provides several examples of bootstrapping using the proposed convolutional technique and compares the results to those of the Monte Carlo bootstrap, and to those of the competing saddlepoint method.</p>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2809","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Bootstrapping was designed to randomly resample data from a fixed sample using Monte Carlo techniques. However, the original sample itself defines a discrete distribution. Convolutional methods are well suited for discrete distributions, and we show the advantages of utilizing these techniques for bootstrapping. The discrete convolutional approach can provide exact numerical solutions for bootstrap quantities, or at least mathematical error bounds. In contrast, Monte Carlo bootstrap methods can only provide confidence intervals which converge slowly. Additionally, for some problems the computation time of the convolutional approach can be dramatically less than that of Monte Carlo resampling. This article provides several examples of bootstrapping using the proposed convolutional technique and compares the results to those of the Monte Carlo bootstrap, and to those of the competing saddlepoint method.

通过离散卷积方法的自举
Bootstrapping的设计是使用蒙特卡罗技术从固定样本中随机重新采样数据。然而,原始样本本身定义了一个离散分布。卷积方法非常适合于离散分布,我们展示了利用这些技术进行自举的优势。离散卷积方法可以为自举量提供精确的数值解,或者至少是数学误差边界。相比之下,蒙特卡罗方法只能提供收敛缓慢的置信区间。此外,对于某些问题,卷积方法的计算时间比蒙特卡罗重采样的计算时间要少得多。本文提供了几个使用所提出的卷积技术的自举示例,并将结果与蒙特卡罗自举的结果以及与之竞争的鞍点方法的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process. The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信