Imitate and optimize modern control algorithms for forestry cranes by means of artificial neural networks

Q4 Agricultural and Biological Sciences
Landtechnik Pub Date : 2020-06-17 DOI:10.15150/LT.2020.3241
Marco Wydra, A. Bauer, C. Geiger, M. Geimer
{"title":"Imitate and optimize modern control algorithms for forestry cranes by means of artificial neural networks","authors":"Marco Wydra, A. Bauer, C. Geiger, M. Geimer","doi":"10.15150/LT.2020.3241","DOIUrl":null,"url":null,"abstract":"Modern hydrostatic function drives for agricultural and forestry machines require complex control algorithms. Electric controls offer significant energy and control advantages over the state of the art, such as reduced tendency to oscillate or implementation of a variable power limitation. Therefore, new algorithms are essential for sustainable optimization of future machines. The paper investigates a method to automatically transfer an existing control algorithm to an artificial neural network (ANN), which will be optimized by the Pattern Search algorithm afterwards. The method was applied to a forestry crane with an electro-hydraulic flow-on-demand control. After 41 generations of optimized parameter sets, the ANN control already shows a behavior comparable to the reference control. With this approach it is possible to transfer deterministic algorithms into stochastic algorithms with comparable transfer functions, which can then be optimized using machine learning methods.","PeriodicalId":35524,"journal":{"name":"Landtechnik","volume":"75 1","pages":"118"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landtechnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15150/LT.2020.3241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Modern hydrostatic function drives for agricultural and forestry machines require complex control algorithms. Electric controls offer significant energy and control advantages over the state of the art, such as reduced tendency to oscillate or implementation of a variable power limitation. Therefore, new algorithms are essential for sustainable optimization of future machines. The paper investigates a method to automatically transfer an existing control algorithm to an artificial neural network (ANN), which will be optimized by the Pattern Search algorithm afterwards. The method was applied to a forestry crane with an electro-hydraulic flow-on-demand control. After 41 generations of optimized parameter sets, the ANN control already shows a behavior comparable to the reference control. With this approach it is possible to transfer deterministic algorithms into stochastic algorithms with comparable transfer functions, which can then be optimized using machine learning methods.
用人工神经网络模拟和优化林业起重机的现代控制算法
用于农业和林业机器的现代静液压功能驱动器需要复杂的控制算法。与现有技术相比,电气控制提供了显著的能量和控制优势,例如减少了振荡的趋势或实现了可变功率限制。因此,新算法对于未来机器的可持续优化至关重要。本文研究了一种将现有的控制算法自动转换为人工神经网络的方法,然后用模式搜索算法对其进行优化。将该方法应用于具有电液流量按需控制的林业起重机。经过41代优化的参数集,ANN控制已经显示出与参考控制相当的行为。通过这种方法,可以将确定性算法转换为具有可比较传递函数的随机算法,然后可以使用机器学习方法对其进行优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Landtechnik
Landtechnik Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
1.10
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信