The Relationship between the Atmospheric Heat Source over Tibetan Plateau and the Westerly-Monsoon Evolution in August and Its Physical Mechanism

IF 2.1 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Chunxue Wang, Yueqing Li
{"title":"The Relationship between the Atmospheric Heat Source over Tibetan Plateau and the Westerly-Monsoon Evolution in August and Its Physical Mechanism","authors":"Chunxue Wang, Yueqing Li","doi":"10.1155/2022/2762292","DOIUrl":null,"url":null,"abstract":"In this study, the relationship between the East Asian subtropical westerly jet (EASWJ) and the East Asian summer monsoon (EASM) (westerly monsoon) and the correlation with the atmospheric heat source (AHS) on the Tibetan plateau (TP), especially the possible connection of the sudden enhancement of the correlation in August were analyzed. The results show that there is a significant correlation between the EASWJ and the EASM from June to October in terms of both intra-annual variability and interannual fluctuations, and the correlation between the AHS over TP and the EASWJ and the EASM during the same period is significantly enhanced in August. The synthetic analysis indicated that when the AHS was strong, a positive anomaly of a horizontal temperature gradient appeared over TP, which was conducive to the southward shift of the high-altitude temperature gradient center, resulting in the southward position of the axis of the 200 hPa westerly jet, and an upward and downward inclined westerly anomaly zone appeared from the south slope of TP to the main body and its north slope. Meanwhile, the East Asia–Pacific (EAP) teleconnection pattern with a negative phase appeared at 500 hPa, and TP to western Japan was located in the negative value area of the wave train. The AHS was conducive to the enhancement of the EAP negative phase, which was not conducive to the further northward transportation of water vapor by the EASM. On the contrary, when the AHS on TP was weak, the position of the westerly jet was northward and the EAP positive phase enhanced, contributing to the further northward transport of water vapor from the EASM.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1155/2022/2762292","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the relationship between the East Asian subtropical westerly jet (EASWJ) and the East Asian summer monsoon (EASM) (westerly monsoon) and the correlation with the atmospheric heat source (AHS) on the Tibetan plateau (TP), especially the possible connection of the sudden enhancement of the correlation in August were analyzed. The results show that there is a significant correlation between the EASWJ and the EASM from June to October in terms of both intra-annual variability and interannual fluctuations, and the correlation between the AHS over TP and the EASWJ and the EASM during the same period is significantly enhanced in August. The synthetic analysis indicated that when the AHS was strong, a positive anomaly of a horizontal temperature gradient appeared over TP, which was conducive to the southward shift of the high-altitude temperature gradient center, resulting in the southward position of the axis of the 200 hPa westerly jet, and an upward and downward inclined westerly anomaly zone appeared from the south slope of TP to the main body and its north slope. Meanwhile, the East Asia–Pacific (EAP) teleconnection pattern with a negative phase appeared at 500 hPa, and TP to western Japan was located in the negative value area of the wave train. The AHS was conducive to the enhancement of the EAP negative phase, which was not conducive to the further northward transportation of water vapor by the EASM. On the contrary, when the AHS on TP was weak, the position of the westerly jet was northward and the EAP positive phase enhanced, contributing to the further northward transport of water vapor from the EASM.
青藏高原大气热源与8月西风演变的关系及其物理机制
本文分析了东亚副热带西风急流(EASWJ)与东亚夏季风(EASM)的关系,以及与青藏高原大气热源(AHS)的相关性,特别是与8月相关性突然增强的可能联系。结果表明,从年内变化和年际波动来看,6月至10月的EASWJ与EASM之间存在显著的相关性,8月同期TP上的AHS与EASWJ和EASM之间的相关性显著增强。综合分析表明,当AHS较强时,TP上空出现水平温度梯度的正异常,这有利于高空温度梯度中心的南移,导致200 hPa西风急流,从TP南坡到主体及其北坡出现一个上下倾斜的西风异常带。同时,东亚-太平洋(EAP)遥相关模式出现在500 hPa和TP向日本西部的移动位于波列的负值区域。AHS有利于EAP负相的增强,不利于EASM进一步向北输送水蒸气。相反,当TP上的AHS较弱时,西风急流的位置向北,EAP正相增强,有助于EASM的水蒸气进一步向北输送。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Meteorology
Advances in Meteorology 地学天文-气象与大气科学
CiteScore
5.30
自引率
3.40%
发文量
80
审稿时长
>12 weeks
期刊介绍: Advances in Meteorology is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of meteorology and climatology. Topics covered include, but are not limited to, forecasting techniques and applications, meteorological modeling, data analysis, atmospheric chemistry and physics, climate change, satellite meteorology, marine meteorology, and forest meteorology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信