Weighted norm inequalities for the bilinear maximal operator on variable Lebesgue spaces

Pub Date : 2018-11-01 DOI:10.5565/publmat6422004
D. Cruz-Uribe, O. Guzmán
{"title":"Weighted norm inequalities for the bilinear maximal operator on variable Lebesgue spaces","authors":"D. Cruz-Uribe, O. Guzmán","doi":"10.5565/publmat6422004","DOIUrl":null,"url":null,"abstract":"We extend the theory of weighted norm inequalities on variable Lebesgue spaces to the case of bilinear operators. We introduce a bilinear version of the variable $\\A_\\pp$ condition, and show that it is necessary and sufficient for the bilinear maximal operator to satisfy a weighted norm inequality. Our work generalizes the linear results of the first author, Fiorenza and Neugebauer \\cite{dcu-f-nPreprint2010} in the variable Lebesgue spaces and the bilinear results of Lerner {\\em et al.} \\cite{MR2483720} in the classical Lebesgue spaces. As an application we prove weighted norm inequalities for bilinear singular integral operators in the variable Lebesgue spaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6422004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We extend the theory of weighted norm inequalities on variable Lebesgue spaces to the case of bilinear operators. We introduce a bilinear version of the variable $\A_\pp$ condition, and show that it is necessary and sufficient for the bilinear maximal operator to satisfy a weighted norm inequality. Our work generalizes the linear results of the first author, Fiorenza and Neugebauer \cite{dcu-f-nPreprint2010} in the variable Lebesgue spaces and the bilinear results of Lerner {\em et al.} \cite{MR2483720} in the classical Lebesgue spaces. As an application we prove weighted norm inequalities for bilinear singular integral operators in the variable Lebesgue spaces.
分享
查看原文
可变Lebesgue空间上双线性极大算子的加权范数不等式
我们将变Lebesgue空间上的加权范数不等式理论推广到双线性算子的情况。我们引入了变量$\a_\pp$条件的双线性形式,并证明了双线性极大算子满足加权范数不等式的充要条件。我们的工作推广了第一作者Fiorenza和Neugebauer\cite{dcu-f-nPreprint2010}在可变Lebesgue空间中的线性结果以及Lerner等人在经典Lebesgue空格中的双线性结果。作为一个应用,我们证明了变Lebesgue空间中双线性奇异积分算子的加权范数不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信