Recurrence and transience of symmetric random walks with long-range jumps

IF 1.3 3区 数学 Q2 STATISTICS & PROBABILITY
J. Baumler
{"title":"Recurrence and transience of symmetric random walks with long-range jumps","authors":"J. Baumler","doi":"10.1214/23-EJP998","DOIUrl":null,"url":null,"abstract":"Let $X_1, X_2, \\ldots$ be i.i.d. random variables with values in $\\mathbb{Z}^d$ satisfying $\\mathbb{P} \\left(X_1=x\\right) = \\mathbb{P} \\left(X_1=-x\\right) = \\Theta \\left(\\|x\\|^{-s}\\right)$ for some $s>d$. We show that the random walk defined by $S_n = \\sum_{k=1}^{n} X_k$ is recurrent for $d\\in \\{1,2\\}$ and $s \\geq 2d$, and transient otherwise. This also shows that for an electric network in dimension $d\\in \\{1,2\\}$ the condition $c_{\\{x,y\\}} \\leq C \\|x-y\\|^{-2d}$ implies recurrence, whereas $c_{\\{x,y\\}} \\geq c \\|x-y\\|^{-s}$ for some $c>0$ and $s<2d$ implies transience. This fact was already previously known, but we give a new proof of it that uses only electric networks. We also use these results to show the recurrence of random walks on certain long-range percolation clusters. In particular, we show recurrence for several cases of the two-dimensional weight-dependent random connection model, which was previously studied by Gracar et al. [Electron. J. Probab. 27. 1-31 (2022)].","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-EJP998","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

Let $X_1, X_2, \ldots$ be i.i.d. random variables with values in $\mathbb{Z}^d$ satisfying $\mathbb{P} \left(X_1=x\right) = \mathbb{P} \left(X_1=-x\right) = \Theta \left(\|x\|^{-s}\right)$ for some $s>d$. We show that the random walk defined by $S_n = \sum_{k=1}^{n} X_k$ is recurrent for $d\in \{1,2\}$ and $s \geq 2d$, and transient otherwise. This also shows that for an electric network in dimension $d\in \{1,2\}$ the condition $c_{\{x,y\}} \leq C \|x-y\|^{-2d}$ implies recurrence, whereas $c_{\{x,y\}} \geq c \|x-y\|^{-s}$ for some $c>0$ and $s<2d$ implies transience. This fact was already previously known, but we give a new proof of it that uses only electric networks. We also use these results to show the recurrence of random walks on certain long-range percolation clusters. In particular, we show recurrence for several cases of the two-dimensional weight-dependent random connection model, which was previously studied by Gracar et al. [Electron. J. Probab. 27. 1-31 (2022)].
具有长距离跳跃的对称随机游动的递归性和瞬态性
设$X_1,X_2,\ldots$为i.i.d.随机变量,其中$\mathbb{Z}^d$中的值满足$\mathbb{P}\left(X_1=X\right)=\mathbb{P}\left(X_1=-X\right)=\Theta\left。我们证明了由$S_n=\sum_{k=1}^{n}X_k$定义的随机游动对于$d\in\{1,2\}$和$S\geq2d$是递归的,否则是瞬态的。这也表明,对于维数为$d\in\{1,2\}$的电网络,条件$c_{x,y\}}\leq c\|x-y\|^{-2d}$意味着递推,而对于一些$c>0$和$s<2d$,条件$c_{x,y\}\geq c\|x-y\||^{-s}$则意味着瞬变。这一事实以前已经为人所知,但我们给出了一个仅使用电网的新证据。我们还用这些结果来证明某些长程渗流团簇上随机游动的递推性。特别是,我们展示了二维重量相关随机连接模型的几种情况的复发,Gracar等人[Electron.J.Probab.27。1-31(2022)]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信