Arjun Radhakrishnan, I. Georgilas, I. Hamerton, M. Shaffer, D. Ivanov
{"title":"MANUFACTURING MULTI-MATRIX COMPOSITES: OUT-OF-VACUUM BAG CONSOLIDATION","authors":"Arjun Radhakrishnan, I. Georgilas, I. Hamerton, M. Shaffer, D. Ivanov","doi":"10.1115/1.4063091","DOIUrl":null,"url":null,"abstract":"\n The formation of porosity is a major challenge in any composite manufacturing process particularly in the absence of vacuum assistance. Highly localised injection of polymer matrix into regions of interest in a dry preform is a route to manufacturing multi-matrix fibre-reinforced composites with high filler concentrations which are otherwise difficult to achieve. Such multi-matrix fibre-reinforced composite systems, which combine multiple resins in continuous form offer improved structural performance around stress concentrators and multi-functional capabilities, unlike traditional composite materials. As the process lacks vacuum assistance, porosity becomes a primary issue to be addressed. This paper presents a rheo-kinetic coupled rapid consolidation procedure for optimizing the quality of localised matrix patches. The procedure involves manufacturing trials and analytical consolidation models to determine the best processing program for minimal voidage in the patch. The results provide a step towards an efficient manufacturing process for designing multi-matrix composites without the need for complex vacuum bag arrangements. By optimizing the quality of the localised matrix patches, the procedure described in this paper can improve the overall performance of multi-matrix composite systems. The ability to create these composites without the need for complex vacuum bag arrangements can also reduce the manufacturing cost and time associated with the manufacturing of multi-matrix fibre-reinforced composites.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063091","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The formation of porosity is a major challenge in any composite manufacturing process particularly in the absence of vacuum assistance. Highly localised injection of polymer matrix into regions of interest in a dry preform is a route to manufacturing multi-matrix fibre-reinforced composites with high filler concentrations which are otherwise difficult to achieve. Such multi-matrix fibre-reinforced composite systems, which combine multiple resins in continuous form offer improved structural performance around stress concentrators and multi-functional capabilities, unlike traditional composite materials. As the process lacks vacuum assistance, porosity becomes a primary issue to be addressed. This paper presents a rheo-kinetic coupled rapid consolidation procedure for optimizing the quality of localised matrix patches. The procedure involves manufacturing trials and analytical consolidation models to determine the best processing program for minimal voidage in the patch. The results provide a step towards an efficient manufacturing process for designing multi-matrix composites without the need for complex vacuum bag arrangements. By optimizing the quality of the localised matrix patches, the procedure described in this paper can improve the overall performance of multi-matrix composite systems. The ability to create these composites without the need for complex vacuum bag arrangements can also reduce the manufacturing cost and time associated with the manufacturing of multi-matrix fibre-reinforced composites.
期刊介绍:
Areas of interest including, but not limited to: Additive manufacturing; Advanced materials and processing; Assembly; Biomedical manufacturing; Bulk deformation processes (e.g., extrusion, forging, wire drawing, etc.); CAD/CAM/CAE; Computer-integrated manufacturing; Control and automation; Cyber-physical systems in manufacturing; Data science-enhanced manufacturing; Design for manufacturing; Electrical and electrochemical machining; Grinding and abrasive processes; Injection molding and other polymer fabrication processes; Inspection and quality control; Laser processes; Machine tool dynamics; Machining processes; Materials handling; Metrology; Micro- and nano-machining and processing; Modeling and simulation; Nontraditional manufacturing processes; Plant engineering and maintenance; Powder processing; Precision and ultra-precision machining; Process engineering; Process planning; Production systems optimization; Rapid prototyping and solid freeform fabrication; Robotics and flexible tooling; Sensing, monitoring, and diagnostics; Sheet and tube metal forming; Sustainable manufacturing; Tribology in manufacturing; Welding and joining