FRACTAL KINETICS ANALYSIS OF ENZYMATIC HYDROLYSIS OF SAWDUST USING CELLULASE IN ETHANOL PRODUCTION

M. Megawati, D. S. Fardhyanti, H. Prasetiawan, D. Hartanto, I. Khoiroh, Slamet Suwito, K. Kuntoro
{"title":"FRACTAL KINETICS ANALYSIS OF ENZYMATIC HYDROLYSIS OF SAWDUST USING CELLULASE IN ETHANOL PRODUCTION","authors":"M. Megawati, D. S. Fardhyanti, H. Prasetiawan, D. Hartanto, I. Khoiroh, Slamet Suwito, K. Kuntoro","doi":"10.15294/JBAT.V7I2.11398","DOIUrl":null,"url":null,"abstract":"Sawdust is one of the abundantly lignocellulosic materials in the world. Sawdust is considered promosing for ethanol production, because it contains mainly lignin, hemicellulose, and cellulose. The drying process was applied to pretreat sawdust to make its degradation process easier. Biodegradation of sawdust was conducted by enzymatic hydrolysis using cellulase. The volume of cellulase in the hydrolysis substrate was varied from 5 to 9% v/v. The sugar concentration produced by enzymatic hydrolysis of sawdust every 1 h was recorded as well as its fractal kinetics analysis. Fermentation using yeast in 5 days was also performed to convert sugar hydrolysate to ethanol. Optimal sugar concentration in hydrolysate obtained was about 0.15 mol/L with cellulase volume of 9% v/v and its ethanol concentration was about 0.059% v/v. Fractal kinetics models by Kopelman and Valjamae which can quantitatively describe enzymatic hydrolysis of sawdust using cellulase were used. However, the result of this study indicated that, at high enzyme volume (9% v/v), Valjamae model was more suitable than Kopelman. The fractal exponent value (h) was about 0.667 and the rate constants (k) were about 0.44, 0.53, and 0.58 1/h at the enzyme volume of 5, 7, and 9% v/v. Thus, it can be concluded that enzyme volumes significantly effect rate constants.","PeriodicalId":17764,"journal":{"name":"Jurnal Bahan Alam Terbarukan","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Bahan Alam Terbarukan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/JBAT.V7I2.11398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Sawdust is one of the abundantly lignocellulosic materials in the world. Sawdust is considered promosing for ethanol production, because it contains mainly lignin, hemicellulose, and cellulose. The drying process was applied to pretreat sawdust to make its degradation process easier. Biodegradation of sawdust was conducted by enzymatic hydrolysis using cellulase. The volume of cellulase in the hydrolysis substrate was varied from 5 to 9% v/v. The sugar concentration produced by enzymatic hydrolysis of sawdust every 1 h was recorded as well as its fractal kinetics analysis. Fermentation using yeast in 5 days was also performed to convert sugar hydrolysate to ethanol. Optimal sugar concentration in hydrolysate obtained was about 0.15 mol/L with cellulase volume of 9% v/v and its ethanol concentration was about 0.059% v/v. Fractal kinetics models by Kopelman and Valjamae which can quantitatively describe enzymatic hydrolysis of sawdust using cellulase were used. However, the result of this study indicated that, at high enzyme volume (9% v/v), Valjamae model was more suitable than Kopelman. The fractal exponent value (h) was about 0.667 and the rate constants (k) were about 0.44, 0.53, and 0.58 1/h at the enzyme volume of 5, 7, and 9% v/v. Thus, it can be concluded that enzyme volumes significantly effect rate constants.
纤维素酶水解木屑乙醇的分形动力学分析
木屑是世界上丰富的木质纤维素材料之一。木屑被认为是促进乙醇生产的,因为它主要含有木质素、半纤维素和纤维素。采用干燥工艺对木屑进行预处理,使木屑的降解过程更加容易。采用纤维素酶水解法对木屑进行生物降解。纤维素酶在水解底物中的体积为5-9%v/v。记录锯末每1小时酶解产生的糖浓度及其分形动力学分析。使用酵母在5天内进行发酵以将糖水解物转化为乙醇。纤维素酶用量为9%v/v,乙醇浓度为0.059%v/v时,水解产物中的最佳糖浓度为0.15mol/L。采用Kopelman和Valjamae的分形动力学模型,可以定量描述纤维素酶水解木屑的过程。然而,本研究的结果表明,在高酶容量(9%v/v)下,Valjamae模型比Kopelman模型更适合。在酶体积为5%v/v、7%v/v和9%v/v时,分形指数值(h)约为0.667,速率常数(k)约为0.44、0.53和0.58。因此,可以得出结论,酶体积显著影响速率常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信