Repeated isoflurane exposures of neonatal rats contribute to cognitive dysfunction in juvenile animals: the role of miR-497 in isoflurane-induced neurotoxicity.
Yuanyuan Que, Fang-xiang Zhang, Jing-Jie Peng, Zhu zhang, Duwen Zhang, Ming-Hong He
{"title":"Repeated isoflurane exposures of neonatal rats contribute to cognitive dysfunction in juvenile animals: the role of miR-497 in isoflurane-induced neurotoxicity.","authors":"Yuanyuan Que, Fang-xiang Zhang, Jing-Jie Peng, Zhu zhang, Duwen Zhang, Ming-Hong He","doi":"10.5603/FHC.A2021.0011","DOIUrl":null,"url":null,"abstract":"INTRODUCTION\nIsoflurane anesthesia at the period of brain development can lead to neurotoxicity and long-term cognitive impairment. This study aimed to investigate the role of miR-497 on isoflurane-induced neurotoxicity.\n\n\nMATERIAL AND METHODS\nNeonatal rats (P7) were subject to isoflurane for 2 h at P7, P9, and P11. MiR-497 and neuron apoptosis were evaluated in hippocampal tissue by qRT-PCR and western blot. Fear conditioning test and Morris water maze were performed to determine cognitive function. The cell viability of isolated hippocampal neuronal cells exposed to isoflurane was measured using MTT test. The regulation of phospholipase D1 (PLD1) by miR-497 in isolated hippocampal neuronal cells was evaluated by luciferase reporter assays and western blot. Immunohistochemistry and TUNEL staining were employed to examine the PLD1 expression and neuronal cell apoptosis in hippocampus of neonatal rats, respectively.\n\n\nRESULTS\nRepeated isoflurane anesthesia led to neurons' apoptosis and long-term cognitive impairment. Isoflurane exposure led to apoptosis and viability reduction in hippocampal neuronal cells. MiR-497 was observed to be upregulated after isoflurane exposure both in vivo and in vitro. Knockdown of miR-497 attenuated isoflurane-induced neuronal cells apoptosis and viability reduction. Furthermore, PLD1 was predicted and then validated as a novel target of miR-497. miR-497 could negatively regulate PLD1 by binding to its 3'-untranslated region. Downregulation of PLD1 was also observed after isoflurane exposure in neonatal rat hippocampus and hippocampal primary neuronal cell cultures.\n\n\nCONCLUSIONS\nInduction of miR-497 was involved in isoflurane anesthesia-induced cognitive impairment and neuronal cell apoptosis by targeting PLD1. miR-497 may be a novel potential mechanism in isoflurane-induced neurotoxicity so that our findings provide new insight into a better and understanding of the clinical application of isoflurane.","PeriodicalId":12322,"journal":{"name":"Folia histochemica et cytobiologica","volume":"59 2 1","pages":"114-123"},"PeriodicalIF":1.7000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia histochemica et cytobiologica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5603/FHC.A2021.0011","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
INTRODUCTION
Isoflurane anesthesia at the period of brain development can lead to neurotoxicity and long-term cognitive impairment. This study aimed to investigate the role of miR-497 on isoflurane-induced neurotoxicity.
MATERIAL AND METHODS
Neonatal rats (P7) were subject to isoflurane for 2 h at P7, P9, and P11. MiR-497 and neuron apoptosis were evaluated in hippocampal tissue by qRT-PCR and western blot. Fear conditioning test and Morris water maze were performed to determine cognitive function. The cell viability of isolated hippocampal neuronal cells exposed to isoflurane was measured using MTT test. The regulation of phospholipase D1 (PLD1) by miR-497 in isolated hippocampal neuronal cells was evaluated by luciferase reporter assays and western blot. Immunohistochemistry and TUNEL staining were employed to examine the PLD1 expression and neuronal cell apoptosis in hippocampus of neonatal rats, respectively.
RESULTS
Repeated isoflurane anesthesia led to neurons' apoptosis and long-term cognitive impairment. Isoflurane exposure led to apoptosis and viability reduction in hippocampal neuronal cells. MiR-497 was observed to be upregulated after isoflurane exposure both in vivo and in vitro. Knockdown of miR-497 attenuated isoflurane-induced neuronal cells apoptosis and viability reduction. Furthermore, PLD1 was predicted and then validated as a novel target of miR-497. miR-497 could negatively regulate PLD1 by binding to its 3'-untranslated region. Downregulation of PLD1 was also observed after isoflurane exposure in neonatal rat hippocampus and hippocampal primary neuronal cell cultures.
CONCLUSIONS
Induction of miR-497 was involved in isoflurane anesthesia-induced cognitive impairment and neuronal cell apoptosis by targeting PLD1. miR-497 may be a novel potential mechanism in isoflurane-induced neurotoxicity so that our findings provide new insight into a better and understanding of the clinical application of isoflurane.
期刊介绍:
"Folia Histochemica et Cytobiologica" is an international, English-language journal publishing articles in the areas of histochemistry, cytochemistry and cell & tissue biology.
"Folia Histochemica et Cytobiologica" was established in 1963 under the title: ‘Folia Histochemica et Cytochemica’ by the Polish Histochemical and Cytochemical Society as a journal devoted to the rapidly developing fields of histochemistry and cytochemistry. In 1984, the profile of the journal was broadened to accommodate papers dealing with cell and tissue biology, and the title was accordingly changed to "Folia Histochemica et Cytobiologica".
"Folia Histochemica et Cytobiologica" is published quarterly, one volume a year, by the Polish Histochemical and Cytochemical Society.