Minimizing immersions of a hyperbolic surface in a hyperbolic 3-manifold

IF 1.7 1区 数学 Q1 MATHEMATICS
F. Bonsante, Gabriele Mondello, Jean-Marc Schlenker
{"title":"Minimizing immersions of a hyperbolic surface in a hyperbolic 3-manifold","authors":"F. Bonsante, Gabriele Mondello, Jean-Marc Schlenker","doi":"10.1353/ajm.2023.a902953","DOIUrl":null,"url":null,"abstract":"abstract:Let $(S,h)$ be a closed hyperbolic surface and $M$ be a quasi-Fuchsian $3$-manifold. We consider incompressible maps from $S$ to $M$ that are critical points of an energy functional $F$ which is homogeneous of degree $1$. These ``minimizing'' maps are solutions of a non-linear elliptic equation, and reminiscent of harmonic maps---but when the target is Fuchsian, minimizing maps are minimal Lagrangian diffeomorphisms to the totally geodesic surface in $M$. We prove the uniqueness of smooth minimizing maps from $(S,h)$ to $M$ in a given homotopy class. When $(S,h)$ is fixed, smooth minimizing maps from $(S,h)$ are described by a simple holomorphic data on $S$: a complex self-adjoint Codazzi tensor of determinant $1$. The space of admissible data is smooth and naturally equipped with a complex structure, for which the monodromy map taking a data to the monodromy representation of the image is holomorphic. Minimizing maps are in this way reminiscent of shear-bend coordinates, with the complexification of $F$ analoguous to the complex length.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2019-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2023.a902953","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

abstract:Let $(S,h)$ be a closed hyperbolic surface and $M$ be a quasi-Fuchsian $3$-manifold. We consider incompressible maps from $S$ to $M$ that are critical points of an energy functional $F$ which is homogeneous of degree $1$. These ``minimizing'' maps are solutions of a non-linear elliptic equation, and reminiscent of harmonic maps---but when the target is Fuchsian, minimizing maps are minimal Lagrangian diffeomorphisms to the totally geodesic surface in $M$. We prove the uniqueness of smooth minimizing maps from $(S,h)$ to $M$ in a given homotopy class. When $(S,h)$ is fixed, smooth minimizing maps from $(S,h)$ are described by a simple holomorphic data on $S$: a complex self-adjoint Codazzi tensor of determinant $1$. The space of admissible data is smooth and naturally equipped with a complex structure, for which the monodromy map taking a data to the monodromy representation of the image is holomorphic. Minimizing maps are in this way reminiscent of shear-bend coordinates, with the complexification of $F$ analoguous to the complex length.
最小化双曲3流形中双曲曲面的浸入
设$(S,h)$为闭双曲面,$M$为拟Fuchsian$3$-流形。我们考虑从$S$到$M$的不可压缩映射,它们是阶为$1$的齐次能量函数$F$的临界点。这些“最小化”映射是非线性椭圆方程的解,让人想起调和映射——但当目标是Fuchsian时,最小化映射是对$M$的全测地曲面的最小拉格朗日微分同胚。在给定的同伦类中,我们证明了从$(S,h)$到$M$的光滑最小化映射的唯一性。当$(S,h)$是固定的时,来自$(S、h)$的光滑最小化映射由$S$上的一个简单全纯数据描述:行列式$1$的复自伴随Codazzi张量。可容许数据的空间是光滑的,并且自然地具有复杂的结构,对于该结构,将数据带到图像的单调表示的单调映射是全纯的。最小化地图以这种方式让人想起剪切弯曲坐标,$F$的复杂化类似于复杂长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
35
审稿时长
24 months
期刊介绍: The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信