{"title":"Cosmic evolution in the anisotropic space–time from modified f(R, T) gravity","authors":"S Noori Gashti, J Sadeghi","doi":"10.1007/s12043-022-02492-y","DOIUrl":null,"url":null,"abstract":"<div><p>In light of an expanded theory of <i>f</i>(<i>R</i>, <i>T</i>) gravity with the matter field as a viscous fluid, this paper evaluated an accelerated cosmology model in the anisotropic space–time. A variable Hubble parameter was used to investigate dynamic parameters concerning red-shift and the effect of the viscous coefficient. By explicitly calculating the energy density using the equations of motion, we examine the variations of these values in terms of red-shift <i>z</i> for different variables. The model is formed by a mathematical method, and the equation of motion parameter shows a quintessence behaviour at the late-time cosmic acceleration. We calculate the other energy conditions, i.e., NEC, WEC and SEC, evaluating their changes with cosmic time. Finally, we compare the quantities with the latest observable data, from the Planck and WMAP7 probes.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"97 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-022-02492-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
In light of an expanded theory of f(R, T) gravity with the matter field as a viscous fluid, this paper evaluated an accelerated cosmology model in the anisotropic space–time. A variable Hubble parameter was used to investigate dynamic parameters concerning red-shift and the effect of the viscous coefficient. By explicitly calculating the energy density using the equations of motion, we examine the variations of these values in terms of red-shift z for different variables. The model is formed by a mathematical method, and the equation of motion parameter shows a quintessence behaviour at the late-time cosmic acceleration. We calculate the other energy conditions, i.e., NEC, WEC and SEC, evaluating their changes with cosmic time. Finally, we compare the quantities with the latest observable data, from the Planck and WMAP7 probes.
期刊介绍:
Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.