Bodol Momha Merlin, Djopkop Kouanang Landry, Amba Jean Chills, Nkongho Anyi Joseph, Zoa Ambassa, Nzengwa Robert
{"title":"Investigation of differential shrinkage stresses in a revolution shell structure due to the evolving parameters of concrete","authors":"Bodol Momha Merlin, Djopkop Kouanang Landry, Amba Jean Chills, Nkongho Anyi Joseph, Zoa Ambassa, Nzengwa Robert","doi":"10.1515/cls-2022-0179","DOIUrl":null,"url":null,"abstract":"Abstract The article focuses on the influence of differential shrinkage linked by drying at the early-age displacements and strain distribution of a concrete ring specimen. Depending on the gradient of dimension changes through the thickness, tensile stress occurs near the exposed surface where drying is greater and thus results in strain gradients development. An experimental design was carried out on a concrete ring cast in laboratory conditions in order to monitor strains and displacements. Subsequently, a finite element method was used to simulate the ring’s behaviour in drying conditions. The gradient development linked by a non-uniform moisture distribution in the thickness is established by solving the non-linear partial differential drying equation with Mensi’s diffusion law. The stress and displacement analysis was modeled by three nodes curved shell FEM (CSFE-sh) based on strain approximation with the shell theory. Finally, the ring’s behaviour includes both differential shrinkage resulting in the mechanical and physical properties of gradients development in the thickness and the influence of prestressing, in which the tensile creep effects have a great influence. The comparison of experimental results with numerical simulation shows that drying and tensile creep phenomena have the most important influence on the early-age stress development in the walled ring.","PeriodicalId":44435,"journal":{"name":"Curved and Layered Structures","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Curved and Layered Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cls-2022-0179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The article focuses on the influence of differential shrinkage linked by drying at the early-age displacements and strain distribution of a concrete ring specimen. Depending on the gradient of dimension changes through the thickness, tensile stress occurs near the exposed surface where drying is greater and thus results in strain gradients development. An experimental design was carried out on a concrete ring cast in laboratory conditions in order to monitor strains and displacements. Subsequently, a finite element method was used to simulate the ring’s behaviour in drying conditions. The gradient development linked by a non-uniform moisture distribution in the thickness is established by solving the non-linear partial differential drying equation with Mensi’s diffusion law. The stress and displacement analysis was modeled by three nodes curved shell FEM (CSFE-sh) based on strain approximation with the shell theory. Finally, the ring’s behaviour includes both differential shrinkage resulting in the mechanical and physical properties of gradients development in the thickness and the influence of prestressing, in which the tensile creep effects have a great influence. The comparison of experimental results with numerical simulation shows that drying and tensile creep phenomena have the most important influence on the early-age stress development in the walled ring.
期刊介绍:
The aim of Curved and Layered Structures is to become a premier source of knowledge and a worldwide-recognized platform of research and knowledge exchange for scientists of different disciplinary origins and backgrounds (e.g., civil, mechanical, marine, aerospace engineers and architects). The journal publishes research papers from a broad range of topics and approaches including structural mechanics, computational mechanics, engineering structures, architectural design, wind engineering, aerospace engineering, naval engineering, structural stability, structural dynamics, structural stability/reliability, experimental modeling and smart structures. Therefore, the Journal accepts both theoretical and applied contributions in all subfields of structural mechanics as long as they contribute in a broad sense to the core theme.