{"title":"The Zonal Patterns in Late Quaternary Tropical South American Precipitation","authors":"T. Kukla, M. Winnick, M. Laguë, Z. Xia","doi":"10.1029/2022PA004498","DOIUrl":null,"url":null,"abstract":"Speleothem oxygen isotope records (δ18O) of tropical South American rainfall in the late Quaternary show a zonal “South American Precipitation Dipole” (SAPD). The dipole is characterized by opposing east‐west precipitation anomalies compared to the present—wetter in the east and drier in the west at the mid‐Holocene (∼7 ka), and drier in the east and wetter in the west at the Last Glacial Maximum (∼21 ka). However, the SAPD remains enigmatic because it is expressed differently in western versus eastern δ18O records and isotope‐enabled climate model simulations usually misrepresent the magnitude and/or spatial pattern of δ18O change. Here, we address the SAPD enigma in two parts. First, we re‐interpret the δ18O data to account for upwind rainout effects that are known to be pervasive in tropical South America, but are not always considered in Quaternary paleoclimate studies. Our revised interpretation reconciles the δ18O data with cave infiltration and other proxy records, and indicates that the centroid of tropical South American rainfall has migrated zonally over time. Second, using an energy balance model of tropical atmospheric circulation, we hypothesize that zonal migration of the precipitation centroid can be explained by regional energy budget shifts, such as changing Saharan albedo associated with the African Humid Period, that have not been modeled in previous SAPD studies. This hypothesis of a migrating precipitation centroid presents a new framework for interpreting δ18O records from tropical South America and may help explain the zonal rainfall anomalies that predate the late Quaternary.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2022PA004498","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Speleothem oxygen isotope records (δ18O) of tropical South American rainfall in the late Quaternary show a zonal “South American Precipitation Dipole” (SAPD). The dipole is characterized by opposing east‐west precipitation anomalies compared to the present—wetter in the east and drier in the west at the mid‐Holocene (∼7 ka), and drier in the east and wetter in the west at the Last Glacial Maximum (∼21 ka). However, the SAPD remains enigmatic because it is expressed differently in western versus eastern δ18O records and isotope‐enabled climate model simulations usually misrepresent the magnitude and/or spatial pattern of δ18O change. Here, we address the SAPD enigma in two parts. First, we re‐interpret the δ18O data to account for upwind rainout effects that are known to be pervasive in tropical South America, but are not always considered in Quaternary paleoclimate studies. Our revised interpretation reconciles the δ18O data with cave infiltration and other proxy records, and indicates that the centroid of tropical South American rainfall has migrated zonally over time. Second, using an energy balance model of tropical atmospheric circulation, we hypothesize that zonal migration of the precipitation centroid can be explained by regional energy budget shifts, such as changing Saharan albedo associated with the African Humid Period, that have not been modeled in previous SAPD studies. This hypothesis of a migrating precipitation centroid presents a new framework for interpreting δ18O records from tropical South America and may help explain the zonal rainfall anomalies that predate the late Quaternary.
期刊介绍:
Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.