Asymptotic behaviour of the lattice Green function

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY
Emmanuel Michta, G. Slade
{"title":"Asymptotic behaviour of the lattice Green function","authors":"Emmanuel Michta, G. Slade","doi":"10.30757/alea.v19-38","DOIUrl":null,"url":null,"abstract":"The lattice Green function, i.e., the resolvent of the discrete Laplace operator, is fundamental in probability theory and mathematical physics. We derive its long-distance behaviour via a detailed analysis of an integral representation involving modified Bessel functions. Our emphasis is on the decay of the massive lattice Green function in the vicinity of the massless (critical) case, and the recovery of Euclidean isotropy in the massless limit. This provides a prototype for the expected but unproven long-distance behaviour of near-critical two-point functions in statistical mechanical models such as percolation, the Ising model, and the self-avoiding walk above their upper critical dimensions.","PeriodicalId":49244,"journal":{"name":"Alea-Latin American Journal of Probability and Mathematical Statistics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alea-Latin American Journal of Probability and Mathematical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v19-38","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 10

Abstract

The lattice Green function, i.e., the resolvent of the discrete Laplace operator, is fundamental in probability theory and mathematical physics. We derive its long-distance behaviour via a detailed analysis of an integral representation involving modified Bessel functions. Our emphasis is on the decay of the massive lattice Green function in the vicinity of the massless (critical) case, and the recovery of Euclidean isotropy in the massless limit. This provides a prototype for the expected but unproven long-distance behaviour of near-critical two-point functions in statistical mechanical models such as percolation, the Ising model, and the self-avoiding walk above their upper critical dimensions.
格格林函数的渐近性质
晶格格林函数,即离散拉普拉斯算子的解,是概率论和数学物理的基础。我们通过对包含修正贝塞尔函数的积分表示的详细分析,推导出它的远距离行为。我们的重点是在无质量(临界)情况附近的质量晶格格林函数的衰减,以及在无质量极限下欧几里得各向同性的恢复。这为统计力学模型(如渗透、Ising模型和自避行走)中近临界两点函数的预期但未经证实的长距离行为提供了一个原型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
48
期刊介绍: ALEA publishes research articles in probability theory, stochastic processes, mathematical statistics, and their applications. It publishes also review articles of subjects which developed considerably in recent years. All articles submitted go through a rigorous refereeing process by peers and are published immediately after accepted. ALEA is an electronic journal of the Latin-american probability and statistical community which provides open access to all of its content and uses only free programs. Authors are allowed to deposit their published article into their institutional repository, freely and with no embargo, as long as they acknowledge the source of the paper. ALEA is affiliated with the Institute of Mathematical Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信