M. Kaliszewski, E. Trafny, M. Włodarski, R. Lewandowski, M. Stępińska, M. Kwaśny, J. Kostecki, K. Kopczyński
{"title":"Real-time analysis and classification of bioaerosols based on optical scattering properties","authors":"M. Kaliszewski, E. Trafny, M. Włodarski, R. Lewandowski, M. Stępińska, M. Kwaśny, J. Kostecki, K. Kopczyński","doi":"10.5604/01.3001.0009.9475","DOIUrl":null,"url":null,"abstract":"The size and shape of biological particles are important parameters allowing discrimination between various species. We have studied several aerosols of biological origin such as pollens, bacterial spores and vegetative bacteria. All of them presented different morphology. Using optical size and shape analyser we found good correlation between light scattering properties and actual particle features determined by scanning electron and fluorescence microscopy. In this study, we demonstrated that HCA (Hierarchical Cluster Analysis) offers fast and continuous bioaerosol classification based on shape and size data matrices of aerosols. The HCA gives an unequivocal interpretation of particle size vs. asymmetry data. Therefore, it may provide high throughput and reliable screening and classification of bioaerosols using scattering characteristics.","PeriodicalId":9068,"journal":{"name":"Biuletyn Wojskowej Akademii Technicznej","volume":"66 1","pages":"27-40"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biuletyn Wojskowej Akademii Technicznej","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0009.9475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The size and shape of biological particles are important parameters allowing discrimination between various species. We have studied several aerosols of biological origin such as pollens, bacterial spores and vegetative bacteria. All of them presented different morphology. Using optical size and shape analyser we found good correlation between light scattering properties and actual particle features determined by scanning electron and fluorescence microscopy. In this study, we demonstrated that HCA (Hierarchical Cluster Analysis) offers fast and continuous bioaerosol classification based on shape and size data matrices of aerosols. The HCA gives an unequivocal interpretation of particle size vs. asymmetry data. Therefore, it may provide high throughput and reliable screening and classification of bioaerosols using scattering characteristics.