Anshika Garg, Shubham Gupta, N. Tewari, Sukeshana Srivastav, A. Chanda
{"title":"Effect of Adhesive Materials in Re-Attachment of Crown and Crown–Root Fractures of Permanent Maxillary Anterior Tooth: A Computational Study","authors":"Anshika Garg, Shubham Gupta, N. Tewari, Sukeshana Srivastav, A. Chanda","doi":"10.3390/mca28020041","DOIUrl":null,"url":null,"abstract":"Traumatic dental injuries (TDI) are frequent among individuals of all ages, with a prevalence ranging from 12–22%, with crown and crown–root fractures being the most common. Fragment reattachment using light-cured nanocomposites is the recommended method for the management of these fractures. Though there are several clinical studies that have assessed the efficacy of such materials, an in-silico characterization of the effects of traumatic forces on the re-attached fragments has never been performed. Hence, this study aimed to evaluate the efficacy of various adhesive materials in crown and crown–root reattachments through computational modelling. A full-scale permanent maxillary anterior tooth model was developed by segmenting 3D scanned cone beam computed tomography (CBCT) images of the pulp, root, and enamel precisely. The full-scale 3D tooth model was then subjected to a novel numerical cutting operation to describe the crown and crown–root fractures. The fractured tooth models were then filled computationally with three commonly used filler (or adhesive) materials, namely flowable composite, resin cement, and resin adhesive, and subjected to masticatory and traumatic loading conditions. The flowable composite demonstrated a statistically significant difference and the lowest produced stresses when subjected to masticatory loading. Resin cement demonstrated reduced stress values for crown–root fractures that were masticatory loaded after being reattached using adhesive materials. During traumatic loading, resin cement demonstrated lower displacements and stress values across both fractures. The novel findings reported in this study are anticipated to assist dentists in selecting the most appropriate adhesive materials that induce the least stress on the reattached tooth when subjected to second trauma, for both crown and crown–root fractures.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28020041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2
Abstract
Traumatic dental injuries (TDI) are frequent among individuals of all ages, with a prevalence ranging from 12–22%, with crown and crown–root fractures being the most common. Fragment reattachment using light-cured nanocomposites is the recommended method for the management of these fractures. Though there are several clinical studies that have assessed the efficacy of such materials, an in-silico characterization of the effects of traumatic forces on the re-attached fragments has never been performed. Hence, this study aimed to evaluate the efficacy of various adhesive materials in crown and crown–root reattachments through computational modelling. A full-scale permanent maxillary anterior tooth model was developed by segmenting 3D scanned cone beam computed tomography (CBCT) images of the pulp, root, and enamel precisely. The full-scale 3D tooth model was then subjected to a novel numerical cutting operation to describe the crown and crown–root fractures. The fractured tooth models were then filled computationally with three commonly used filler (or adhesive) materials, namely flowable composite, resin cement, and resin adhesive, and subjected to masticatory and traumatic loading conditions. The flowable composite demonstrated a statistically significant difference and the lowest produced stresses when subjected to masticatory loading. Resin cement demonstrated reduced stress values for crown–root fractures that were masticatory loaded after being reattached using adhesive materials. During traumatic loading, resin cement demonstrated lower displacements and stress values across both fractures. The novel findings reported in this study are anticipated to assist dentists in selecting the most appropriate adhesive materials that induce the least stress on the reattached tooth when subjected to second trauma, for both crown and crown–root fractures.
期刊介绍:
Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.