Implementation of Particle Swarm Optimization Algorithm in Matlab Code for Hyperelastic Characterization

Talaka Dya, B. B. Blaise, G. Betchewe, Mohamadou Alidou
{"title":"Implementation of Particle Swarm Optimization Algorithm in Matlab Code for Hyperelastic Characterization","authors":"Talaka Dya, B. B. Blaise, G. Betchewe, Mohamadou Alidou","doi":"10.4236/wjm.2021.117011","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to demonstrate the applicability of Particle Swarm Optimization algorithm to determine material parameters in incompressible isotropic elastic strain-energy functions using combined tension and torsion loading. Simulation of rubber behavior was conducted from the governing equations of the deformation of a cylinder composed of isotropic hyperelastic incompressible materials. Four different forms of strain-energy function were considered based respectively on polynomial, exponential and logarithmic terms to reproduce load force (N) and torque (M) trends using natural rubber experimental data. After highlighting the minimization of the objective function generated in the fitting process, the study revealed that a particle swarm optimization algorithm could be successfully used to identify the best material parameters and characterize the behavior of rubber-like hyperelastic materials.","PeriodicalId":70106,"journal":{"name":"力学国际期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"力学国际期刊(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/wjm.2021.117011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The purpose of this paper is to demonstrate the applicability of Particle Swarm Optimization algorithm to determine material parameters in incompressible isotropic elastic strain-energy functions using combined tension and torsion loading. Simulation of rubber behavior was conducted from the governing equations of the deformation of a cylinder composed of isotropic hyperelastic incompressible materials. Four different forms of strain-energy function were considered based respectively on polynomial, exponential and logarithmic terms to reproduce load force (N) and torque (M) trends using natural rubber experimental data. After highlighting the minimization of the objective function generated in the fitting process, the study revealed that a particle swarm optimization algorithm could be successfully used to identify the best material parameters and characterize the behavior of rubber-like hyperelastic materials.
粒子群优化算法在超弹性表征中的Matlab代码实现
本文的目的是证明粒子群优化算法的适用性,以确定材料参数的不可压缩各向同性弹性应变-能量函数在联合张力和扭转载荷。从各向同性超弹性不可压缩材料组成的圆柱体的变形控制方程出发,对橡胶的变形行为进行了模拟。利用天然橡胶实验数据,分别考虑了四种不同形式的应变能函数,分别基于多项式、指数和对数项,再现了载荷力(N)和扭矩(M)的变化趋势。在强调拟合过程中产生的目标函数的最小化之后,研究表明,粒子群优化算法可以成功地用于识别最佳材料参数并表征类橡胶超弹性材料的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
275
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信