ANALYSIS OF THE LACTATION CURVE OF MURRAH BUFFALOES WITH MIXED NON-LINEAR MODELS

IF 0.3 Q4 AGRONOMY
C. Luna-Palomera, J. Domínguez-Viveros, Guadalupe Nelson Aguilar-Palma, Francisco Castillo-Rangel, F. Sánchez-Dávila, U. Macías-Cruz
{"title":"ANALYSIS OF THE LACTATION CURVE OF MURRAH BUFFALOES WITH MIXED NON-LINEAR MODELS","authors":"C. Luna-Palomera, J. Domínguez-Viveros, Guadalupe Nelson Aguilar-Palma, Francisco Castillo-Rangel, F. Sánchez-Dávila, U. Macías-Cruz","doi":"10.29393/chjaas37-22alcu60022","DOIUrl":null,"url":null,"abstract":"This study aimed to evaluate the lactation curve of female Murrah buffaloes, using mixed nonlinear models (NLM), across three lactation periods (180 d, 210 d, and 240 d). A total of 5334 data on daily milk production (kg) were analyzed. The data were collected every seven days in the interval of one to 250 days of lactation, corresponding to 221 lactations and 145 females, with calvings from 2017 to 2019. The data came from a herd located in the Centro municipality, Tabasco, Mexico. Five NLM were evaluated: Wood (WOD), Wiltmink (WIL), Cobby (COB), Brody (BRO), Sikka (SIK). The best fit model was selected based on the mean prediction error, mean absolute percentage error (MAPE), prediction error variance, coefficient of determination (R 2 ), concordance correlation coefficient (CCC), Akaike (AIC) and Bayesian (BIC) information criteria. A regression analysis was performed between the observed and predicted values. All the NLM had a R 2 above 0.91. They tend to underestimate the predictions, without residual autocorrelation. The MAPE showed an average value of 23.5%. The best fit model was WOD, followed by SIK and BRO. For WIL and COB, the mixed model did not improve the fitting. The shortest lactation period showed the best fit, followed by the 210 d and 240 d periods. The relationship between observed:predicted values fluctuated from 0.65 to 1.00, with an average value of 0.94. The use of NLM transcended in the AIC and BIC. The evaluated models showed goodness of fit, with good predictability, but low values in accuracy and precision of prediction.","PeriodicalId":42485,"journal":{"name":"Chilean Journal of Agricultural & Animal Sciences","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chilean Journal of Agricultural & Animal Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29393/chjaas37-22alcu60022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 2

Abstract

This study aimed to evaluate the lactation curve of female Murrah buffaloes, using mixed nonlinear models (NLM), across three lactation periods (180 d, 210 d, and 240 d). A total of 5334 data on daily milk production (kg) were analyzed. The data were collected every seven days in the interval of one to 250 days of lactation, corresponding to 221 lactations and 145 females, with calvings from 2017 to 2019. The data came from a herd located in the Centro municipality, Tabasco, Mexico. Five NLM were evaluated: Wood (WOD), Wiltmink (WIL), Cobby (COB), Brody (BRO), Sikka (SIK). The best fit model was selected based on the mean prediction error, mean absolute percentage error (MAPE), prediction error variance, coefficient of determination (R 2 ), concordance correlation coefficient (CCC), Akaike (AIC) and Bayesian (BIC) information criteria. A regression analysis was performed between the observed and predicted values. All the NLM had a R 2 above 0.91. They tend to underestimate the predictions, without residual autocorrelation. The MAPE showed an average value of 23.5%. The best fit model was WOD, followed by SIK and BRO. For WIL and COB, the mixed model did not improve the fitting. The shortest lactation period showed the best fit, followed by the 210 d and 240 d periods. The relationship between observed:predicted values fluctuated from 0.65 to 1.00, with an average value of 0.94. The use of NLM transcended in the AIC and BIC. The evaluated models showed goodness of fit, with good predictability, but low values in accuracy and precision of prediction.
用混合非线性模型分析MURRAH水牛泌乳曲线
本研究旨在使用混合非线性模型(NLM)评估雌性Murrah水牛在三个哺乳期(180天、210天和240天)的泌乳曲线。共分析了5334个关于日产奶量(kg)的数据。数据是在哺乳期1至250天内每7天收集一次,对应于2017年至2019年的221名哺乳期和145名女性产仔。数据来自墨西哥塔巴斯科Centro市的一个牛群。评估了五种NLM:Wood(WOD)、Wildmink(WIL)、Cobby(COB)、Brody(BRO)、Sikka(SIK)。基于平均预测误差、平均绝对百分比误差(MAPE)、预测误差方差、决定系数(R2)、一致性相关系数(CCC)、Akaike(AIC)和Bayesian(BIC)信息准则选择最佳拟合模型。在观测值和预测值之间进行回归分析。所有NLM的R2均在0.91以上。他们往往低估了预测,没有残差自相关。MAPE平均值为23.5%,最佳拟合模型为WOD,其次为SIK和BRO。对于WIL和COB,混合模型并没有改善拟合。泌乳期最短最适合,其次是210天和240天。观测值之间的关系:预测值在0.65到1.00之间波动,平均值为0.94。NLM的使用超越了AIC和BIC。评估的模型显示出拟合优度,具有良好的可预测性,但预测的准确性和精密度值较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
23
期刊介绍: Revista Chile de Agricultura y Ciencias Veterinarias es una revista de acceso abierto (open access), que significa que su contenido está disponible en forma gratuita para los usuarios y sus instituciones. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar, o establecer una conexión a los artículos sin necesidad de pedir autorización previa al editor o a los autores. Esto es de acuerdo con la definición de Budapest Open Access Initiative (BOAI). Los artículos se publican bajo una licencia de Creative Commons reconocimiento No Comercial 4.0 Internacional. Copyright: Se autoriza la reproducción y cita de los artículos publicados en Chilean Journal of Agricultural & Animal Sciences (ex Agro-Ciencia), siempre que se indique el nombre del autor(es), año, volumen, número y páginas. Las opiniones y afirmaciones expuestas en los trabajos representan exclusivamente los puntos de vista de los autores. La mención de productos o marcas comerciales en la revista no implica una recomendación por parte de la Universidad de Concepción.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信