Moisture changes with increasing summer precipitation in Qilian and Tienshan mountainous areas

IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Qianrong Ma, Zhongwai Li, Zhiheng Chen, Tao Su, Yongping Wu, Guolin Feng
{"title":"Moisture changes with increasing summer precipitation in Qilian and Tienshan mountainous areas","authors":"Qianrong Ma,&nbsp;Zhongwai Li,&nbsp;Zhiheng Chen,&nbsp;Tao Su,&nbsp;Yongping Wu,&nbsp;Guolin Feng","doi":"10.1002/asl.1154","DOIUrl":null,"url":null,"abstract":"<p>The precipitation in the Qilian (QMA) and Tienshan (TMA) mountain areas is one of the main sources of subsurface and surface water in northwestern China (NWC). Based on two datasets, CN05.1 and station-observed daily precipitation, we found that summer precipitation in 1979–2020 exhibited an increasing trend in NWC. The results of rotation empirical orthogonal function (REOF) analysis also separated the increased precipitation patterns in the QMA and TMA from the other REOF modes; the proportion of the precipitation of these areas to the total NWC summer precipitation substantially increased (0.12%⋅year<sup>−1</sup> and 0.03%⋅year<sup>−1</sup>, respectively). According to the moisture budget, the evaporation changes in the QMA and TMA were coherently coupled with precipitation, which suggested the feedback between increasing evaporation and precipitation with the recently warming climate. The precipitation increase was larger than that of evaporation, indicating a net wetting trend in the QMA and TMA. The increase in zonal horizontal and vertical moisture advection terms contributed more to the increased precipitation in the QMA. The increase in meridional moisture advection contributed more to the increased precipitation in the TMA. We concluded comprehensive frameworks of the water vapor transport in climate change in mountain areas in NWC which aimed to contribute to the understanding of arid region hydrology.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1154","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1154","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

The precipitation in the Qilian (QMA) and Tienshan (TMA) mountain areas is one of the main sources of subsurface and surface water in northwestern China (NWC). Based on two datasets, CN05.1 and station-observed daily precipitation, we found that summer precipitation in 1979–2020 exhibited an increasing trend in NWC. The results of rotation empirical orthogonal function (REOF) analysis also separated the increased precipitation patterns in the QMA and TMA from the other REOF modes; the proportion of the precipitation of these areas to the total NWC summer precipitation substantially increased (0.12%⋅year−1 and 0.03%⋅year−1, respectively). According to the moisture budget, the evaporation changes in the QMA and TMA were coherently coupled with precipitation, which suggested the feedback between increasing evaporation and precipitation with the recently warming climate. The precipitation increase was larger than that of evaporation, indicating a net wetting trend in the QMA and TMA. The increase in zonal horizontal and vertical moisture advection terms contributed more to the increased precipitation in the QMA. The increase in meridional moisture advection contributed more to the increased precipitation in the TMA. We concluded comprehensive frameworks of the water vapor transport in climate change in mountain areas in NWC which aimed to contribute to the understanding of arid region hydrology.

Abstract Image

祁连山和天山山区夏季降水量增加时的水分变化
祁连山和天山地区降水是西北地区地下水和地表水的主要来源之一。基于CN05.1和台站逐日降水数据,发现1979-2020年夏季NWC呈增加趋势。旋转经验正交函数(REOF)分析结果也将QMA和TMA的降水增加模式与其他REOF模式分离出来;这些地区的降水占NWC夏季总降水的比例大幅增加(分别为0.12%·年−1和0.03%·年−1)。水汽收支表明,QMA和TMA的蒸发变化与降水呈相干耦合关系,表明近段气候变暖对蒸发和降水的增加具有反馈作用。降水增量大于蒸发量增量,表明QMA和TMA呈净湿润趋势。纬向水平和垂直水汽平流项的增加对QMA降水增加的贡献更大。经向水汽平流的增加对TMA降水的增加贡献更大。在此基础上,建立了NWC山区气候变化过程中水汽输送的综合框架,以期对干旱区水文学的认识有所帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Science Letters
Atmospheric Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.90
自引率
3.30%
发文量
73
审稿时长
>12 weeks
期刊介绍: Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques. We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信