On edge irregularity strength of line graph and line cut-vertex graph of comb graph

IF 0.4 Q4 MATHEMATICS
H. M. Nagesh, V. R. Girish
{"title":"On edge irregularity strength of line graph and line cut-vertex graph of comb graph","authors":"H. M. Nagesh, V. R. Girish","doi":"10.7546/nntdm.2022.28.3.517-524","DOIUrl":null,"url":null,"abstract":"For a simple graph $G$, a vertex labeling $\\phi:V(G) \\rightarrow \\{1, 2,\\ldots,k\\}$ is called $k$-labeling. The weight of an edge $xy$ in $G$, written $w_{\\phi}(xy)$, is the sum of the labels of end vertices $x$ and $y$, i.e., $w_{\\phi}(xy)=\\phi(x)+\\phi(y)$. A vertex $k$-labeling is defined to be an edge irregular $k$-labeling of the graph $G$ if for every two different edges $e$ and $f$, $w_{\\phi}(e) \\neq w_{\\phi}(f)$. The minimum $k$ for which the graph $G$ has an edge irregular $k$-labeling is called the edge irregularity strength of $G$, written $es(G)$. In this paper, we find the exact value of edge irregularity strength of line graph of comb graph $P_n \\bigodot K_1$ for $n=2,3,4$; and determine the bounds for $n \\geq 5$. Also, the edge irregularity strength of line cut-vertex graph of $P_n \\bigodot K_1$ for $n=2$; and determine the bounds for $n \\geq 3$.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2022.28.3.517-524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a simple graph $G$, a vertex labeling $\phi:V(G) \rightarrow \{1, 2,\ldots,k\}$ is called $k$-labeling. The weight of an edge $xy$ in $G$, written $w_{\phi}(xy)$, is the sum of the labels of end vertices $x$ and $y$, i.e., $w_{\phi}(xy)=\phi(x)+\phi(y)$. A vertex $k$-labeling is defined to be an edge irregular $k$-labeling of the graph $G$ if for every two different edges $e$ and $f$, $w_{\phi}(e) \neq w_{\phi}(f)$. The minimum $k$ for which the graph $G$ has an edge irregular $k$-labeling is called the edge irregularity strength of $G$, written $es(G)$. In this paper, we find the exact value of edge irregularity strength of line graph of comb graph $P_n \bigodot K_1$ for $n=2,3,4$; and determine the bounds for $n \geq 5$. Also, the edge irregularity strength of line cut-vertex graph of $P_n \bigodot K_1$ for $n=2$; and determine the bounds for $n \geq 3$.
关于梳状图的线图和线割顶点图的边不规则强度
对于一个简单图$G$,一个顶点标记$\phi:V(G)\rightarrow\{1,2,\ldots,k\}$称为$k$-标记。$G$中的边$xy$的权重,写为$w_{\phi}(xy)$,是端点$x$和$y$的标签之和,即$w_{\phi}(xy)=\phi(x)+\phi(y)$。顶点$k$-标记被定义为图$G$的边不规则$k$标记,如果对于每两个不同的边$e$和$f$,$w_{\phi}(e)\neq w_}(f)$。图$G$具有边缘不规则$k$标记的最小$k$称为$G$的边缘不规则强度,写为$es(G)$。本文给出了当$n=2,3,4$时,梳状图$P_n\bigodot K_1$的线图的边不规则强度的精确值;并确定$n\geq5$的边界。此外,对于$n=2$,$P_n\bigodot K_1$的线割顶点图的边不规则强度;并确定$n\geq3$的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
33.30%
发文量
71
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信