On parabolic and elliptic equations with singular or degenerate coefficients

IF 1.2 2区 数学 Q1 MATHEMATICS
Hongjie Dong, T. Phan
{"title":"On parabolic and elliptic equations with singular or degenerate coefficients","authors":"Hongjie Dong, T. Phan","doi":"10.1512/iumj.2023.72.9202","DOIUrl":null,"url":null,"abstract":"We study both divergence and non-divergence form parabolic and elliptic equations in the half space $\\{x_d>0\\}$ whose coefficients are the product of $x_d^\\alpha$ and uniformly nondegenerate bounded measurable matrix-valued functions, where $\\alpha \\in (-1, \\infty)$. As such, the coefficients are singular or degenerate near the boundary of the half space. For equations with the conormal or Neumann boundary condition, we prove the existence, uniqueness, and regularity of solutions in weighted Sobolev spaces and mixed-norm weighted Sobolev spaces when the coefficients are only measurable in the $x_d$ direction and have small mean oscillation in the other directions in small cylinders. Our results are new even in the special case when the coefficients are constants, and they are reduced to the classical results when $\\alpha =0$","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2023.72.9202","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15

Abstract

We study both divergence and non-divergence form parabolic and elliptic equations in the half space $\{x_d>0\}$ whose coefficients are the product of $x_d^\alpha$ and uniformly nondegenerate bounded measurable matrix-valued functions, where $\alpha \in (-1, \infty)$. As such, the coefficients are singular or degenerate near the boundary of the half space. For equations with the conormal or Neumann boundary condition, we prove the existence, uniqueness, and regularity of solutions in weighted Sobolev spaces and mixed-norm weighted Sobolev spaces when the coefficients are only measurable in the $x_d$ direction and have small mean oscillation in the other directions in small cylinders. Our results are new even in the special case when the coefficients are constants, and they are reduced to the classical results when $\alpha =0$
关于具有奇异或退化系数的抛物型和椭圆型方程
我们研究了半空间$\{x_d>0\}$中发散和非发散形式的抛物型和椭圆型方程,其系数是$x_d^\alpha$和一致非退化有界可测矩阵值函数的乘积,其中$\alpha \in (-1, \infty)$。因此,系数在半空间边界附近是奇异的或简并的。对于具有正法边界条件或Neumann边界条件的方程,我们证明了当系数仅在$x_d$方向上可测,且在小柱体中其他方向上有较小的平均振荡时,在加权Sobolev空间和混合范数加权Sobolev空间中解的存在性、唯一性和正则性。即使在系数为常数的特殊情况下,我们的结果也是新的,并且它们被简化为经典结果 $\alpha =0$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信