{"title":"Reduced computational time in 3D finite element simulation of high speed milling of 6061-T6 aluminum alloy","authors":"Guohe Li, Meng Liu, Shanshan Zhao","doi":"10.1080/10910344.2020.1855651","DOIUrl":null,"url":null,"abstract":"Abstract The finite element method is an important supplement to the experiment on the research of metal cutting mechanism. A 3D thermo-mechanical coupling model was established based on ABAQUS, in which a model of the tool with real structure and a simplified model of the work-piece based on the cutting zone were established. It can greatly improve the computational efficiency because the volume of the work-piece model can be reduced by 70% when compared with the traditional rectangle model. The validation shows that the prediction error of the cutting force is less than 15%, and the prediction results of the chip morphology are in good agreement with the experiment results. In order to reveal the mechanism of high speed milling of 6061-T6 Aluminum alloy, single factor experiments were carried out based on the established model. The results show that the cutting force and cutting temperature rapidly increase with the increase of the axial depth of cut ap and the feed per tooth fz , but slowly increase with the increase of the radial depth of cut ae . The cutting force decreases with the increase of the spindle speed n. However, the cutting temperature increases with the increase of n firstly, and tends to be stable when n is over than 10,000 r/min. GRAPHICAL ABSTRACT","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":"25 1","pages":"558 - 584"},"PeriodicalIF":2.7000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10910344.2020.1855651","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2020.1855651","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract The finite element method is an important supplement to the experiment on the research of metal cutting mechanism. A 3D thermo-mechanical coupling model was established based on ABAQUS, in which a model of the tool with real structure and a simplified model of the work-piece based on the cutting zone were established. It can greatly improve the computational efficiency because the volume of the work-piece model can be reduced by 70% when compared with the traditional rectangle model. The validation shows that the prediction error of the cutting force is less than 15%, and the prediction results of the chip morphology are in good agreement with the experiment results. In order to reveal the mechanism of high speed milling of 6061-T6 Aluminum alloy, single factor experiments were carried out based on the established model. The results show that the cutting force and cutting temperature rapidly increase with the increase of the axial depth of cut ap and the feed per tooth fz , but slowly increase with the increase of the radial depth of cut ae . The cutting force decreases with the increase of the spindle speed n. However, the cutting temperature increases with the increase of n firstly, and tends to be stable when n is over than 10,000 r/min. GRAPHICAL ABSTRACT
期刊介绍:
Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials.
Topics covered include:
-machining performance of all materials, including lightweight materials-
coated and special cutting tools: design and machining performance evaluation-
predictive models for machining performance and optimization, including machining dynamics-
measurement and analysis of machined surfaces-
sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes
precision and micro/nano machining-
design and implementation of in-process sensors for monitoring and control of machining performance-
surface integrity in machining processes, including detection and characterization of machining damage-
new and advanced abrasive machining processes: design and performance analysis-
cutting fluids and special coolants/lubricants-
nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining