Quantum Clustering Analysis: Minima of the Potential Energy Function

A. Maignan, Tony C. Scott
{"title":"Quantum Clustering Analysis: Minima of the Potential Energy Function","authors":"A. Maignan, Tony C. Scott","doi":"10.5121/csit.2020.101914","DOIUrl":null,"url":null,"abstract":"Quantum clustering (QC), is a data clustering algorithm based on quantum mechanics which is accomplished by substituting each point in a given dataset with a Gaussian. The width of the Gaussian is a 𝜎 value, a hyper-parameter which can be manually defined and manipulated to suit the application. Numerical methods are used to find all the minima of the quantum potential as they correspond to cluster centers. Herein, we investigate the mathematical task of expressing and finding all the roots of the exponential polynomial corresponding to the minima of a two-dimensional quantum potential. This is an outstanding task because normally such expressions are impossible to solve analytically. However, we prove that if the points are all included in a square region of size 𝜎, there is only one minimum. This bound is not only useful in the number of solutions to look for, by numerical means, it allows to to propose a new numerical approach “per block”. This technique decreases the number of particles (or samples) by approximating some groups of particles to weighted particles. These findings are not only useful to the quantum clustering problem but also for the exponential polynomials encountered in quantum chemistry, Solid-state Physics and other applications.","PeriodicalId":72673,"journal":{"name":"Computer science & information technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer science & information technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2020.101914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum clustering (QC), is a data clustering algorithm based on quantum mechanics which is accomplished by substituting each point in a given dataset with a Gaussian. The width of the Gaussian is a 𝜎 value, a hyper-parameter which can be manually defined and manipulated to suit the application. Numerical methods are used to find all the minima of the quantum potential as they correspond to cluster centers. Herein, we investigate the mathematical task of expressing and finding all the roots of the exponential polynomial corresponding to the minima of a two-dimensional quantum potential. This is an outstanding task because normally such expressions are impossible to solve analytically. However, we prove that if the points are all included in a square region of size 𝜎, there is only one minimum. This bound is not only useful in the number of solutions to look for, by numerical means, it allows to to propose a new numerical approach “per block”. This technique decreases the number of particles (or samples) by approximating some groups of particles to weighted particles. These findings are not only useful to the quantum clustering problem but also for the exponential polynomials encountered in quantum chemistry, Solid-state Physics and other applications.
量子聚类分析:势能函数的极小值
量子聚类(QC)是一种基于量子力学的数据聚类算法,它通过将给定数据集中的每个点替换为高斯分布来实现。高斯分布的宽度是一个参数,它是一个超参数,可以通过人工定义和操作来适应实际应用。用数值方法求出所有量子势的最小值,因为它们对应于簇中心。在此,我们研究了表示和找到与二维量子势的最小值对应的指数多项式的所有根的数学任务。这是一项突出的任务,因为通常这样的表达式是不可能解析求解的。然而,我们证明了如果所有点都包含在一个面积为φ的正方形区域内,则只有一个最小值。这个边界不仅在通过数值方法寻找解的数量上有用,它允许提出一个新的“每个块”的数值方法。这种技术通过将一些粒子组近似为加权粒子来减少粒子(或样本)的数量。这些发现不仅对量子聚类问题有帮助,而且对量子化学、固体物理和其他应用中遇到的指数多项式也有帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信