{"title":"On partial isometries with circular numerical range","authors":"E. Wegert, I. Spitkovsky","doi":"10.1515/conop-2020-0121","DOIUrl":null,"url":null,"abstract":"Abstract In their LAMA 2016 paper Gau, Wang and Wu conjectured that a partial isometry A acting on ℂn cannot have a circular numerical range with a non-zero center, and proved this conjecture for n ≤ 4. We prove it for operators with rank A = n − 1 and any n. The proof is based on the unitary similarity of A to a compressed shift operator SB generated by a finite Blaschke product B. We then use the description of the numerical range of SB as intersection of Poncelet polygons, a special representation of Blaschke products related to boundary interpolation, and an explicit formula for the barycenter of the vertices of Poncelet polygons involving elliptic functions.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"8 1","pages":"176 - 186"},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2020-0121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract In their LAMA 2016 paper Gau, Wang and Wu conjectured that a partial isometry A acting on ℂn cannot have a circular numerical range with a non-zero center, and proved this conjecture for n ≤ 4. We prove it for operators with rank A = n − 1 and any n. The proof is based on the unitary similarity of A to a compressed shift operator SB generated by a finite Blaschke product B. We then use the description of the numerical range of SB as intersection of Poncelet polygons, a special representation of Blaschke products related to boundary interpolation, and an explicit formula for the barycenter of the vertices of Poncelet polygons involving elliptic functions.