{"title":"Three dimensions of metric-measure spaces, Sobolev embeddings and optimal sign transport","authors":"N. Nikolski","doi":"10.1090/spmj/1752","DOIUrl":null,"url":null,"abstract":"<p>A sign interlacing phenomenon for Bessel sequences, frames, and Riesz bases <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis u Subscript k Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>u</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>k</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(u_{k})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">L^2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> spaces over the spaces of homogeneous type <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega equals left-parenthesis normal upper Omega comma rho comma mu right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>ρ<!-- ρ --></mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Omega =(\\Omega ,\\rho ,\\mu )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> satisfying the doubling/halving conditions is studied. Under some relations among three basic metric-measure parameters of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Omega</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, asymptotics is obtained for the mass moving norms <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-vertical-bar u Subscript k Baseline double-vertical-bar Subscript upper K upper R\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:msub>\n <mml:mi>u</mml:mi>\n <mml:mi>k</mml:mi>\n </mml:msub>\n <mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>K</mml:mi>\n <mml:mi>R</mml:mi>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\|u_k\\|_{KR}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in the sense of Kantorovich–Rubinstein, as well as for the singular numbers of the Lipschitz and Hajlasz–Sobolev embeddings. The main observation shows that, quantitatively, the rate of convergence <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-vertical-bar u Subscript k Baseline double-vertical-bar Subscript upper K upper R Baseline right-arrow 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:msub>\n <mml:mi>u</mml:mi>\n <mml:mi>k</mml:mi>\n </mml:msub>\n <mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>K</mml:mi>\n <mml:mi>R</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\|u_k\\|_{KR}\\to 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> mostly depends on the Bernstein–Kolmogorov <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-widths of a certain compact set of Lipschitz functions, and the widths themselves mostly depend on the interplay between geometric doubling and measure doubling/halving numerical parameters. The “more homogeneous” is the space, the sharper are the results.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1752","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A sign interlacing phenomenon for Bessel sequences, frames, and Riesz bases (uk)(u_{k}) in L2L^2 spaces over the spaces of homogeneous type Ω=(Ω,ρ,μ)\Omega =(\Omega ,\rho ,\mu ) satisfying the doubling/halving conditions is studied. Under some relations among three basic metric-measure parameters of Ω\Omega, asymptotics is obtained for the mass moving norms ‖uk‖KR\|u_k\|_{KR} in the sense of Kantorovich–Rubinstein, as well as for the singular numbers of the Lipschitz and Hajlasz–Sobolev embeddings. The main observation shows that, quantitatively, the rate of convergence ‖uk‖KR→0\|u_k\|_{KR}\to 0 mostly depends on the Bernstein–Kolmogorov nn-widths of a certain compact set of Lipschitz functions, and the widths themselves mostly depend on the interplay between geometric doubling and measure doubling/halving numerical parameters. The “more homogeneous” is the space, the sharper are the results.
期刊介绍:
This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.