ELLIPTIC ASYMPTOTIC REPRESENTATION OF THE FIFTH PAINLEVÉ TRANSCENDENTS

IF 0.6 4区 数学 Q3 MATHEMATICS
S. Shimomura
{"title":"ELLIPTIC ASYMPTOTIC REPRESENTATION OF THE FIFTH PAINLEVÉ TRANSCENDENTS","authors":"S. Shimomura","doi":"10.2206/kyushujm.76.43","DOIUrl":null,"url":null,"abstract":"For the fifth Painleve transcendents an asymptotic representation by the Jacobi $\\mathrm{sn}$-function is presented in cheese-like strips along generic directions near the point at infinity. Its elliptic main part depends on a single integration constant, which is the phase shift and is parametrised by monodromy data for the associated isomonodromy deformation. In addition, under a certain supposition, the error term is also expressed by an explicit asymptotic formula, whose leading term is written in terms of integrals of the $\\mathrm{sn}$-function and the $\\vartheta$-function, and contains the other integration constant. Instead of the justification scheme for asymptotic solutions of Riemann-Hilbert problems by the Brouwer fixed point theorem, we begin with a boundedness property of a Lagrangian function, which enables us to determine the modulus of the $\\mathrm{sn}$-function satisfying the Boutroux equations and to construct deductively the elliptic representation.","PeriodicalId":49929,"journal":{"name":"Kyushu Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyushu Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.76.43","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

For the fifth Painleve transcendents an asymptotic representation by the Jacobi $\mathrm{sn}$-function is presented in cheese-like strips along generic directions near the point at infinity. Its elliptic main part depends on a single integration constant, which is the phase shift and is parametrised by monodromy data for the associated isomonodromy deformation. In addition, under a certain supposition, the error term is also expressed by an explicit asymptotic formula, whose leading term is written in terms of integrals of the $\mathrm{sn}$-function and the $\vartheta$-function, and contains the other integration constant. Instead of the justification scheme for asymptotic solutions of Riemann-Hilbert problems by the Brouwer fixed point theorem, we begin with a boundedness property of a Lagrangian function, which enables us to determine the modulus of the $\mathrm{sn}$-function satisfying the Boutroux equations and to construct deductively the elliptic representation.
第五次painlevÉ超越的椭圆渐近表示
对于第五个Painleve超验,Jacobi$\mathrm{sn}$-函数的渐近表示是在无穷远点附近沿着一般方向以奶酪状条表示的。它的椭圆主要部分取决于一个积分常数,该积分常数是相移,并由相关等单调变形的单调数据参数化。此外,在一定假设下,误差项也用一个显式渐近公式表示,其前导项用$\mathrm{sn}$-函数和$\vartheta$-函数的积分表示,并包含另一个积分常数。我们从拉格朗日函数的有界性开始,而不是用Brouwer不动点定理来证明Riemann-Hilbert问题渐近解的正当性,这使我们能够确定满足Bouroux方程的$\mathrm{sn}$函数的模,并推导地构造椭圆表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
10
审稿时长
>12 weeks
期刊介绍: The Kyushu Journal of Mathematics is an academic journal in mathematics, published by the Faculty of Mathematics at Kyushu University since 1941. It publishes selected research papers in pure and applied mathematics. One volume, published each year, consists of two issues, approximately 20 articles and 400 pages in total. More than 500 copies of the journal are distributed through exchange contracts between mathematical journals, and available at many universities, institutes and libraries around the world. The on-line version of the journal is published at "Jstage" (an aggregator for e-journals), where all the articles published by the journal since 1995 are accessible freely through the Internet.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信