{"title":"Existence of periodic standing wave solutions for a system describing pulse propagation in an optical fiber","authors":"F. Pipicano, Juan Carlos Muñoz Grajales","doi":"10.15446/RECOLMA.V53N1.81045","DOIUrl":null,"url":null,"abstract":"We establish existence of periodic standing waves for a model to describe the propagation of a light pulse inside an optical fiber taking into account the Kerr effect. To this end, we apply the Lyapunov Center Theorem taking advantage that the corresponding standing wave equations can be rewritten as a Hamiltonian system. Furthermore, some of these solutions are approximated by using a Newton-type iteration, combined with a collocation-spectral strategy to discretize the system of standing wave equations. Our numerical simulations are found to be in accordance with our analytical results.","PeriodicalId":38102,"journal":{"name":"Revista Colombiana de Matematicas","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15446/RECOLMA.V53N1.81045","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Matematicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/RECOLMA.V53N1.81045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
We establish existence of periodic standing waves for a model to describe the propagation of a light pulse inside an optical fiber taking into account the Kerr effect. To this end, we apply the Lyapunov Center Theorem taking advantage that the corresponding standing wave equations can be rewritten as a Hamiltonian system. Furthermore, some of these solutions are approximated by using a Newton-type iteration, combined with a collocation-spectral strategy to discretize the system of standing wave equations. Our numerical simulations are found to be in accordance with our analytical results.