Mathematical Modelling and Simulation for One Dimensional - Two-Phase Flow Equation in Petroleum Reservoir: A Matlab Algorithm Approach

Q3 Engineering
Jwngsar Brahma
{"title":"Mathematical Modelling and Simulation for One Dimensional - Two-Phase Flow Equation in Petroleum Reservoir: A Matlab Algorithm Approach","authors":"Jwngsar Brahma","doi":"10.37394/232011.2021.16.24","DOIUrl":null,"url":null,"abstract":"The reservoir behaviors described by a set of differential equation those results from combining Darcy’s law and the law of mass conservation for each phase in the system. The one-dimensional two-phase flow equation is implicit in the pressure and saturation and explicit in relative permeability. A mathematical model of a physical system is a set of partial differential equations together with an appropriate set of boundary conditions, which describes the significant physical processes taking place in that system. The processes occurring in petroleum reservoirs are fluid flow and mass transfer. Two immiscible phases (water& oil) flow simultaneously while mass transfer may take place among the phases. Gravity, capillary, and viscous forces play a role in the fluid-flow process. The model equations must account for all these forces and should also take into account an arbitrary reservoir description with respect to heterogeneity and geometry. Finally, one-dimensional two-phase flow equation through porous media is formulated by considering above reservoir parameters and forces. A numerical method based on finite difference scheme is implemented to get the solutions of one-dimensional two-phase flow equation. A MATLAB algorithm is used to solve the equation with mathematical analysis resulting in upper and lower bounds for the ratio of time step to mesh. The MATLAB algorithm is modified as per the model with appropriate initial and boundary conditions. The algorithm is applied to two-phase water flooding problems in laboratory size cores, and resulting saturation and pressure distribution are presented graphically. The saturation and pressure distribution of two-phase flow model is in agreement with the prediction of the Buckley Leveret theory. The numerical solution is used as a base for evaluating the numerical methods with respect to machine time requirement and allowable tie step for fixed mesh spacing.","PeriodicalId":53603,"journal":{"name":"WSEAS Transactions on Applied and Theoretical Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Applied and Theoretical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232011.2021.16.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The reservoir behaviors described by a set of differential equation those results from combining Darcy’s law and the law of mass conservation for each phase in the system. The one-dimensional two-phase flow equation is implicit in the pressure and saturation and explicit in relative permeability. A mathematical model of a physical system is a set of partial differential equations together with an appropriate set of boundary conditions, which describes the significant physical processes taking place in that system. The processes occurring in petroleum reservoirs are fluid flow and mass transfer. Two immiscible phases (water& oil) flow simultaneously while mass transfer may take place among the phases. Gravity, capillary, and viscous forces play a role in the fluid-flow process. The model equations must account for all these forces and should also take into account an arbitrary reservoir description with respect to heterogeneity and geometry. Finally, one-dimensional two-phase flow equation through porous media is formulated by considering above reservoir parameters and forces. A numerical method based on finite difference scheme is implemented to get the solutions of one-dimensional two-phase flow equation. A MATLAB algorithm is used to solve the equation with mathematical analysis resulting in upper and lower bounds for the ratio of time step to mesh. The MATLAB algorithm is modified as per the model with appropriate initial and boundary conditions. The algorithm is applied to two-phase water flooding problems in laboratory size cores, and resulting saturation and pressure distribution are presented graphically. The saturation and pressure distribution of two-phase flow model is in agreement with the prediction of the Buckley Leveret theory. The numerical solution is used as a base for evaluating the numerical methods with respect to machine time requirement and allowable tie step for fixed mesh spacing.
油层一维两相流方程的数学建模与仿真:Matlab算法方法
储层行为由一组微分方程描述,这些微分方程是结合达西定律和系统中各相的质量守恒定律得出的。一维两相流方程在压力和饱和度中是隐式的,在相对渗透率中是显式的。物理系统的数学模型是一组偏微分方程和一组适当的边界条件,描述了该系统中发生的重要物理过程。油藏中发生的过程是流体流动和传质。两个不混溶相(水和油)同时流动,同时相之间可能发生传质。重力、毛细管力和粘性力在流体流动过程中发挥作用。模型方程必须考虑所有这些力,还应考虑关于非均质性和几何形状的任意储层描述。最后,通过考虑上述储层参数和受力,建立了一维两相渗流方程。采用基于有限差分格式的数值方法求解一维两相流方程。使用MATLAB算法求解方程,并进行数学分析,得出时间步长与网格比的上下限。在适当的初始条件和边界条件下,根据模型对MATLAB算法进行了修改。将该算法应用于实验室尺寸岩心的两相水驱问题,并以图形形式给出了饱和度和压力分布。两相流模型的饱和度和压力分布符合Buckley-Leveret理论的预测。该数值解用作评估数值方法的基础,该方法涉及固定网格间距的机器时间要求和允许的连接步长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
WSEAS Transactions on Applied and Theoretical Mechanics
WSEAS Transactions on Applied and Theoretical Mechanics Engineering-Computational Mechanics
CiteScore
1.30
自引率
0.00%
发文量
21
期刊介绍: WSEAS Transactions on Applied and Theoretical Mechanics publishes original research papers relating to computational and experimental mechanics. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with fluid-structure interaction, impact and multibody dynamics, nonlinear dynamics, structural dynamics and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信