Foliar iron and zinc nano-fertilizers enhance growth, mineral uptake, and antioxidant defense in date palm (Phoenix dactylifera L.) seedlings

Pub Date : 2023-07-01 DOI:10.2478/foecol-2023-0017
H. J. Shareef, Ahmed Y. L. Hzaa, N. Elsheery
{"title":"Foliar iron and zinc nano-fertilizers enhance growth, mineral uptake, and antioxidant defense in date palm (Phoenix dactylifera L.) seedlings","authors":"H. J. Shareef, Ahmed Y. L. Hzaa, N. Elsheery","doi":"10.2478/foecol-2023-0017","DOIUrl":null,"url":null,"abstract":"Abstract Salty sandy soil usually hinders plant growth, while spraying nano-fertilizers such as iron and zinc enhances plant growth. This experiment investigated the role of iron and zinc nano-fertilizers (1 g l–1) in the adaptation of date palm seedlings (cv. Barhee) subjected to salt stress (0, 75, 150 mM NaCl). Nano-fertilizer increased plant height, length of roots, number of leaves, and roots. In contrast, salt stress led to reducing these parameters. Salt stress increased hydrogen peroxide, electrolyte leakage, malondialdehyde, and antioxidants such as soluble proteins, proline, catalase, ascorbate peroxidase, and peroxidase enzyme in the leaves. Abscisic acid also increased. Nano-fertilizers increased the chlorophyll and dry matter of the plant under salt stress. Nano-iron induced better seedling growth than nano-zinc, especially in the length of the roots. Nano-iron under salt stress increased iron and potassium concentration and K/Na ratio in leaves. Nano-fertilizers help the plant adapt to environmental stresses, and seedlings succeed in growing in saline sandy soils.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/foecol-2023-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Salty sandy soil usually hinders plant growth, while spraying nano-fertilizers such as iron and zinc enhances plant growth. This experiment investigated the role of iron and zinc nano-fertilizers (1 g l–1) in the adaptation of date palm seedlings (cv. Barhee) subjected to salt stress (0, 75, 150 mM NaCl). Nano-fertilizer increased plant height, length of roots, number of leaves, and roots. In contrast, salt stress led to reducing these parameters. Salt stress increased hydrogen peroxide, electrolyte leakage, malondialdehyde, and antioxidants such as soluble proteins, proline, catalase, ascorbate peroxidase, and peroxidase enzyme in the leaves. Abscisic acid also increased. Nano-fertilizers increased the chlorophyll and dry matter of the plant under salt stress. Nano-iron induced better seedling growth than nano-zinc, especially in the length of the roots. Nano-iron under salt stress increased iron and potassium concentration and K/Na ratio in leaves. Nano-fertilizers help the plant adapt to environmental stresses, and seedlings succeed in growing in saline sandy soils.
分享
查看原文
叶面铁和锌纳米肥料可提高椰枣幼苗的生长、矿物质吸收和抗氧化能力
含盐量高的沙质土壤通常会阻碍植物的生长,而施用铁和锌等纳米肥料可以促进植物的生长。本试验研究了铁锌纳米肥料(1 g - 1)在枣椰树幼苗(cv。Barhee)经受盐胁迫(0、75、150 mM NaCl)。纳米肥料增加了植株的高度、根系的长度、叶片的数量和根系。相反,盐胁迫导致这些参数降低。盐胁迫增加了叶片中的过氧化氢、电解质泄漏、丙二醛和抗氧化剂,如可溶性蛋白质、脯氨酸、过氧化氢酶、抗坏血酸过氧化物酶和过氧化物酶。脱落酸也增加。纳米肥料增加了盐胁迫下植株的叶绿素和干物质。纳米铁对幼苗生长的促进作用优于纳米锌,尤其是在根系长度方面。盐胁迫下纳米铁提高了叶片铁钾浓度和钾钠比。纳米肥料帮助植物适应环境压力,并且幼苗在盐渍沙质土壤中成功生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信