{"title":"Simulation study on clogging of suspended particles in in-situ leaching of uranium at different concentrations and flow velocity","authors":"Chunze Zhou, Hongqiang Wang, Tongpan Wu, E-ming Hu, Zhiwu Lei, Qing-liang Wang","doi":"10.37190/ppmp/162150","DOIUrl":null,"url":null,"abstract":"Clogging problem has become one of the key problems restricting the mining efficiency of in-situ leaching of uranium, and the related research on the law and mechanism of physical clogging has not been reported. In order to identify and understand the complicated law and mechanism, experimental device is established to simulate the physical clogging caused by suspended particles in the uranium process, the physical clogging law and mechanism under different concentrations and velocity of flow are studied. The experimental results show that with the concentration of suspended particles increasing from 100, 200, 300 to 400 mg/L, the permeability of porous media gradually decreases, and the clogging phenomenon becomes more and more obvious. When the size of suspended particles is small and the velocity is 15 mL/min, the porous medium will not appear clogging, while the velocity is 25mL/min, the whole porous medium will slowly appear internal deposition clogging. When the size of suspended solids is larger and the flow rate is 9, 12, 15mL/min, the higher the velocity, the faster the clogging will be, and backwash can alleviate the surface clogging but cannot change the final clogging result. According to the experiment and actual situation, the physical clogging in in-situ leaching of uranium is mainly surface clogging and filter clogging.","PeriodicalId":49137,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physicochemical Problems of Mineral Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.37190/ppmp/162150","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Clogging problem has become one of the key problems restricting the mining efficiency of in-situ leaching of uranium, and the related research on the law and mechanism of physical clogging has not been reported. In order to identify and understand the complicated law and mechanism, experimental device is established to simulate the physical clogging caused by suspended particles in the uranium process, the physical clogging law and mechanism under different concentrations and velocity of flow are studied. The experimental results show that with the concentration of suspended particles increasing from 100, 200, 300 to 400 mg/L, the permeability of porous media gradually decreases, and the clogging phenomenon becomes more and more obvious. When the size of suspended particles is small and the velocity is 15 mL/min, the porous medium will not appear clogging, while the velocity is 25mL/min, the whole porous medium will slowly appear internal deposition clogging. When the size of suspended solids is larger and the flow rate is 9, 12, 15mL/min, the higher the velocity, the faster the clogging will be, and backwash can alleviate the surface clogging but cannot change the final clogging result. According to the experiment and actual situation, the physical clogging in in-situ leaching of uranium is mainly surface clogging and filter clogging.
期刊介绍:
Physicochemical Problems of Mineral Processing is an international, open access journal which covers theoretical approaches and their practical applications in all aspects of mineral processing and extractive metallurgy.
Criteria for publication in the Physicochemical Problems of Mineral Processing journal are novelty, quality and current interest. Manuscripts which only make routine use of minor extensions to well established methodologies are not appropriate for the journal.
Topics of interest
Analytical techniques and applied mineralogy
Computer applications
Comminution, classification and sorting
Froth flotation
Solid-liquid separation
Gravity concentration
Magnetic and electric separation
Hydro and biohydrometallurgy
Extractive metallurgy
Recycling and mineral wastes
Environmental aspects of mineral processing
and other mineral processing related subjects.