Traveling wave solutions for three-species nonlocal competitive-cooperative systems

Pub Date : 2023-09-04 DOI:10.58997/ejde.2023.55
Hong-Jie Wu, Bang-Sheng Han, Shao-yue Mi, Liang-Bin Shen
{"title":"Traveling wave solutions for three-species nonlocal competitive-cooperative systems","authors":"Hong-Jie Wu, Bang-Sheng Han, Shao-yue Mi, Liang-Bin Shen","doi":"10.58997/ejde.2023.55","DOIUrl":null,"url":null,"abstract":"By using a two-point boundary-value problem and a Schauder's fixed point theorem, we obtain traveling wave solutions connecting \\((0,0,0)\\) to an unknown positive steady state for speed \\(c\\geq c^{\\ast}=\\max\\{2,2\\sqrt{d_2r_2},2\\sqrt{d_3r_3}\\}\\). Then we present some asymptotic behaviors of traveling wave solutions. In particular we show that the nonlocal effects have a great influence on the final state of traveling wave solutions at \\(-\\infty\\). \nFor more information see https://ejde.math.txstate.edu/Volumes/2023/55/abstr.html","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

By using a two-point boundary-value problem and a Schauder's fixed point theorem, we obtain traveling wave solutions connecting \((0,0,0)\) to an unknown positive steady state for speed \(c\geq c^{\ast}=\max\{2,2\sqrt{d_2r_2},2\sqrt{d_3r_3}\}\). Then we present some asymptotic behaviors of traveling wave solutions. In particular we show that the nonlocal effects have a great influence on the final state of traveling wave solutions at \(-\infty\). For more information see https://ejde.math.txstate.edu/Volumes/2023/55/abstr.html
分享
查看原文
三种非局部竞争-合作系统的行波解
利用两点边值问题和Schauder不动点定理,我们得到了连接\((0,0,0)\)到速度\(c\geq c^{\ast}=\max\{2,2\sqrt{d_2r_2},2\sqrt{d_3r_3}\}\)的未知正稳态的行波解。然后给出了行波解的一些渐近性质。特别地,我们证明了非局部效应对行波解在\(-\infty\)处的最终状态有很大的影响。欲了解更多信息,请参阅https://ejde.math.txstate.edu/Volumes/2023/55/abstr.html
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信