New discussion concerning to optimal control for semilinear population dynamics system in Hilbert spaces

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Rohit Patel, A. Shukla, J. Nieto, V. Vijayakumar, S. Jadon
{"title":"New discussion concerning to optimal control for semilinear population dynamics system in Hilbert spaces","authors":"Rohit Patel, A. Shukla, J. Nieto, V. Vijayakumar, S. Jadon","doi":"10.15388/namc.2022.27.26407","DOIUrl":null,"url":null,"abstract":"The objective of our paper is to investigate the optimal control of semilinear population dynamics system with diffusion using semigroup theory. The semilinear population dynamical model with the nonlocal birth process is transformed into a standard abstract semilinear control system by identifying the state, control, and the corresponding function spaces. The state and control spaces are assumed to be Hilbert spaces. The semigroup theory is developed from the properties of the population operators and Laplacian operators. Then the optimal control results of the system are obtained using the C0-semigroup approach, fixed point theorem, and some other simple conditions on the nonlinear term as well as on operators involved in the model.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2022.27.26407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 9

Abstract

The objective of our paper is to investigate the optimal control of semilinear population dynamics system with diffusion using semigroup theory. The semilinear population dynamical model with the nonlocal birth process is transformed into a standard abstract semilinear control system by identifying the state, control, and the corresponding function spaces. The state and control spaces are assumed to be Hilbert spaces. The semigroup theory is developed from the properties of the population operators and Laplacian operators. Then the optimal control results of the system are obtained using the C0-semigroup approach, fixed point theorem, and some other simple conditions on the nonlinear term as well as on operators involved in the model.
关于Hilbert空间中双线性种群动力学系统最优控制的新讨论
本文的目的是利用半群理论研究具有扩散的双线性种群动力学系统的最优控制问题。通过识别状态、控制和相应的函数空间,将具有非局部出生过程的双线性种群动力学模型转化为一个标准的抽象双线性控制系统。状态空间和控制空间被假定为希尔伯特空间。半群理论是从种群算子和拉普拉斯算子的性质发展起来的。然后,利用C0半群方法、不动点定理以及其他一些关于非线性项和模型中涉及的算子的简单条件,得到了系统的最优控制结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信