Rohit Patel, A. Shukla, J. Nieto, V. Vijayakumar, S. Jadon
{"title":"New discussion concerning to optimal control for semilinear population dynamics system in Hilbert spaces","authors":"Rohit Patel, A. Shukla, J. Nieto, V. Vijayakumar, S. Jadon","doi":"10.15388/namc.2022.27.26407","DOIUrl":null,"url":null,"abstract":"The objective of our paper is to investigate the optimal control of semilinear population dynamics system with diffusion using semigroup theory. The semilinear population dynamical model with the nonlocal birth process is transformed into a standard abstract semilinear control system by identifying the state, control, and the corresponding function spaces. The state and control spaces are assumed to be Hilbert spaces. The semigroup theory is developed from the properties of the population operators and Laplacian operators. Then the optimal control results of the system are obtained using the C0-semigroup approach, fixed point theorem, and some other simple conditions on the nonlinear term as well as on operators involved in the model.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Modelling and Control","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2022.27.26407","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 9
Abstract
The objective of our paper is to investigate the optimal control of semilinear population dynamics system with diffusion using semigroup theory. The semilinear population dynamical model with the nonlocal birth process is transformed into a standard abstract semilinear control system by identifying the state, control, and the corresponding function spaces. The state and control spaces are assumed to be Hilbert spaces. The semigroup theory is developed from the properties of the population operators and Laplacian operators. Then the optimal control results of the system are obtained using the C0-semigroup approach, fixed point theorem, and some other simple conditions on the nonlinear term as well as on operators involved in the model.
期刊介绍:
The scope of the journal is to provide a multidisciplinary forum for scientists, researchers and engineers involved in research and design of nonlinear processes and phenomena, including the nonlinear modelling of phenomena of the nature. The journal accepts contributions on nonlinear phenomena and processes in any field of science and technology.
The aims of the journal are: to provide a presentation of theoretical results and applications; to cover research results of multidisciplinary interest; to provide fast publishing of quality papers by extensive work of editors and referees; to provide an early access to the information by presenting the complete papers on Internet.