{"title":"Cross-Classified Item Response Theory Modeling With an Application to Student Evaluation of Teaching","authors":"Sijia Huang, Li Cai","doi":"10.3102/10769986231193351","DOIUrl":null,"url":null,"abstract":"The cross-classified data structure is ubiquitous in education, psychology, and health outcome sciences. In these areas, assessment instruments that are made up of multiple items are frequently used to measure latent constructs. The presence of both the cross-classified structure and multivariate categorical outcomes leads to the so-called item-level data with cross-classified structure. An example of such data structure is the routinely collected student evaluation of teaching (SET) data. Motivated by the lack of research on multilevel IRT modeling with crossed random effects and the need of an approach that can properly handle SET data, this study proposed a cross-classified IRT model, which takes into account both the cross-classified data structure and properties of multiple items in an assessment instrument. A new variant of the Metropolis–Hastings Robbins–Monro (MH-RM) algorithm was introduced to address the computational complexities in estimating the proposed model. A preliminary simulation study was conducted to evaluate the performance of the algorithm for fitting the proposed model to data. The results indicated that model parameters were well recovered. The proposed model was also applied to SET data collected at a large public university to answer empirical research questions. Limitations and future research directions were discussed.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/10769986231193351","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
The cross-classified data structure is ubiquitous in education, psychology, and health outcome sciences. In these areas, assessment instruments that are made up of multiple items are frequently used to measure latent constructs. The presence of both the cross-classified structure and multivariate categorical outcomes leads to the so-called item-level data with cross-classified structure. An example of such data structure is the routinely collected student evaluation of teaching (SET) data. Motivated by the lack of research on multilevel IRT modeling with crossed random effects and the need of an approach that can properly handle SET data, this study proposed a cross-classified IRT model, which takes into account both the cross-classified data structure and properties of multiple items in an assessment instrument. A new variant of the Metropolis–Hastings Robbins–Monro (MH-RM) algorithm was introduced to address the computational complexities in estimating the proposed model. A preliminary simulation study was conducted to evaluate the performance of the algorithm for fitting the proposed model to data. The results indicated that model parameters were well recovered. The proposed model was also applied to SET data collected at a large public university to answer empirical research questions. Limitations and future research directions were discussed.
期刊介绍:
Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.