{"title":"Ruthenium Catalyst Supported on Multi-Walled Carbon Nanotubes for CO Oxidation","authors":"C. E. Kozonoe, R. Giudici, M. Schmal","doi":"10.4236/mrc.2021.103005","DOIUrl":null,"url":null,"abstract":"This work proposes the synthesis of the 5%wt Ru on MWCNT catalyst and the influence of feed rate and testing variables for low-temperature oxidation affecting the CO2 yield. Morphology and incorporation of the nanoparticles in carbon nanotubes were investigated by specific surface area (BET method); thermogravimetric analyses (TGA); X-ray diffraction; Raman spectroscopy, transmission electron microscopy (TEM) and XPS. The conversions of CO and O2 were mostly 100% in groups C1 and C2 (temperature between 200 and 500°C with low WHSV). In order to assess the effect of mass on catalytic activity, condition C3 was tested at even lower temperatures. In the tested catalyst, high activity (100% CO and O2 conversion) was observed, keeping it active under reaction conditions, suggesting oxi-reduction of the RuO2 at surface without affecting the MWCNT but Lewis acid influencing the CO2 yield.","PeriodicalId":60845,"journal":{"name":"催化剂现代研究(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"催化剂现代研究(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/mrc.2021.103005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This work proposes the synthesis of the 5%wt Ru on MWCNT catalyst and the influence of feed rate and testing variables for low-temperature oxidation affecting the CO2 yield. Morphology and incorporation of the nanoparticles in carbon nanotubes were investigated by specific surface area (BET method); thermogravimetric analyses (TGA); X-ray diffraction; Raman spectroscopy, transmission electron microscopy (TEM) and XPS. The conversions of CO and O2 were mostly 100% in groups C1 and C2 (temperature between 200 and 500°C with low WHSV). In order to assess the effect of mass on catalytic activity, condition C3 was tested at even lower temperatures. In the tested catalyst, high activity (100% CO and O2 conversion) was observed, keeping it active under reaction conditions, suggesting oxi-reduction of the RuO2 at surface without affecting the MWCNT but Lewis acid influencing the CO2 yield.