Electromagnetic physical modeling of a gallium nitride distributed transferred electron based planar waveguide structure THz oscillator

IF 0.8 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
C. Dalle
{"title":"Electromagnetic physical modeling of a gallium nitride distributed transferred electron based planar waveguide structure THz oscillator","authors":"C. Dalle","doi":"10.7716/aem.v8i4.1214","DOIUrl":null,"url":null,"abstract":"The potential of a planar waveguide structure terahertz oscillator based on a gallium nitride distributed transferred electron device is theoretically investigated. The circuit numerical physical modeling relies on a two-dimensional time-domain electromagnetism/transport simulator. It is based on the coupled solution of the Maxwell and energy-momentum macroscopic transport equations. The study is focused on the analysis, from the space-time electromagnetic and electron transport quantities, of the complex CW operation of an oscillator, designed and DC biased, to optimally operate at one terahertz. The analysis is performed following a full electromagnetic approach in the time and frequency domain, at the local scale, for the description of the physical phenomena, as well as at the functional scale in order to obtain the quantities interesting the oscillator designer and user.","PeriodicalId":44653,"journal":{"name":"Advanced Electromagnetics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7716/aem.v8i4.1214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The potential of a planar waveguide structure terahertz oscillator based on a gallium nitride distributed transferred electron device is theoretically investigated. The circuit numerical physical modeling relies on a two-dimensional time-domain electromagnetism/transport simulator. It is based on the coupled solution of the Maxwell and energy-momentum macroscopic transport equations. The study is focused on the analysis, from the space-time electromagnetic and electron transport quantities, of the complex CW operation of an oscillator, designed and DC biased, to optimally operate at one terahertz. The analysis is performed following a full electromagnetic approach in the time and frequency domain, at the local scale, for the description of the physical phenomena, as well as at the functional scale in order to obtain the quantities interesting the oscillator designer and user.
氮化镓分布式转移电子平面波导结构太赫兹振荡器的电磁物理建模
从理论上研究了基于氮化镓分布式转移电子器件的平面波导结构太赫兹振荡器的电势。电路的数值物理建模依赖于二维时域电磁/传输模拟器。它是基于麦克斯韦和能量-动量宏观输运方程的耦合解。这项研究的重点是从时空电磁和电子输运量分析振荡器的复杂CW操作,该振荡器经过设计和直流偏置,以在1太赫兹下最佳操作。在时域和频域中,在局部尺度上,为了描述物理现象,以及在函数尺度上,按照全电磁方法进行分析,以获得振荡器设计者和用户感兴趣的量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Electromagnetics
Advanced Electromagnetics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.40
自引率
12.50%
发文量
33
审稿时长
10 weeks
期刊介绍: Advanced Electromagnetics, is electronic peer-reviewed open access journal that publishes original research articles as well as review articles in all areas of electromagnetic science and engineering. The aim of the journal is to become a premier open access source of high quality research that spans the entire broad field of electromagnetics from classic to quantum electrodynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信