{"title":"On rational cuspidal plane curves and the local cohomology of Jacobian rings","authors":"A. Dimca","doi":"10.4171/cmh/471","DOIUrl":null,"url":null,"abstract":"This note gives the complete projective classification of rational, cuspidal plane curves of degree at least 6, and having only weighted homogeneous singularities. It also sheds new light on some previous characterizations of free and nearly free curves in terms of Tjurina numbers. Finally, we suggest a stronger form of Terao’s conjecture on the freeness of a line arrangement being determined by its combinatorics.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2017-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/cmh/471","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/471","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15
Abstract
This note gives the complete projective classification of rational, cuspidal plane curves of degree at least 6, and having only weighted homogeneous singularities. It also sheds new light on some previous characterizations of free and nearly free curves in terms of Tjurina numbers. Finally, we suggest a stronger form of Terao’s conjecture on the freeness of a line arrangement being determined by its combinatorics.
期刊介绍:
Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals.
Commentarii Mathematici Helvetici is covered in:
Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.