基于大规模MIMO的信道检测算法研究 Research on Channel Detection Algorithm Based on Massive MIMO Communication System

高君慧, 张梦娇, 曹凡, 汪佳玮, 吉峰
{"title":"基于大规模MIMO的信道检测算法研究 Research on Channel Detection Algorithm Based on Massive MIMO Communication System","authors":"高君慧, 张梦娇, 曹凡, 汪佳玮, 吉峰","doi":"10.12677/HJWC.2017.72007","DOIUrl":null,"url":null,"abstract":"信道检测是大规模多输入多输出(multiple input multiple output, MIMO)系统中不可缺少的重要模块,往往决定着整个通信系统性能的好坏。信道检测的主要作用是将信道估计后得到的信道矩阵进行运算处理,从而得到发送的信号矢量。本文介绍了硬件可实现的最大比合并检测算法和基于QR分解的线性最小均方误差检测算法,并建立系统传输模型,对上行链路数据传输过程进行仿真。仿真结果表明,基于QR分解线性最小均方误差算法的性能要优于最大比合并算法。 Channel detection is an indispensable module in massive MIMO communication systems, which often determines the performance of the entire communication system. The main function of channel detection is to deal with the channel matrix obtained by channel estimation to get the signal vector sent by the users. In this paper, we introduce the maximum ratio combining algo-rithm and the linear minimum mean square error detection algorithm based on QR decomposition, and establish the system model to simulate the uplink data transmission. The simulation results show that the performance of the linear minimum mean square error algorithm based on QR decomposition is superior to the maximum ratio combining algorithm.","PeriodicalId":66606,"journal":{"name":"无线通信","volume":"07 1","pages":"45-52"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"无线通信","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.12677/HJWC.2017.72007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

信道检测是大规模多输入多输出(multiple input multiple output, MIMO)系统中不可缺少的重要模块,往往决定着整个通信系统性能的好坏。信道检测的主要作用是将信道估计后得到的信道矩阵进行运算处理,从而得到发送的信号矢量。本文介绍了硬件可实现的最大比合并检测算法和基于QR分解的线性最小均方误差检测算法,并建立系统传输模型,对上行链路数据传输过程进行仿真。仿真结果表明,基于QR分解线性最小均方误差算法的性能要优于最大比合并算法。 Channel detection is an indispensable module in massive MIMO communication systems, which often determines the performance of the entire communication system. The main function of channel detection is to deal with the channel matrix obtained by channel estimation to get the signal vector sent by the users. In this paper, we introduce the maximum ratio combining algo-rithm and the linear minimum mean square error detection algorithm based on QR decomposition, and establish the system model to simulate the uplink data transmission. The simulation results show that the performance of the linear minimum mean square error algorithm based on QR decomposition is superior to the maximum ratio combining algorithm.
基于大规模MIMO的信道检测算法研究 Research on Channel Detection Algorithm Based on Massive MIMO Communication System
信道检测是大规模多输入多输出(multiple input multiple output, MIMO)系统中不可缺少的重要模块,往往决定着整个通信系统性能的好坏。信道检测的主要作用是将信道估计后得到的信道矩阵进行运算处理,从而得到发送的信号矢量。本文介绍了硬件可实现的最大比合并检测算法和基于QR分解的线性最小均方误差检测算法,并建立系统传输模型,对上行链路数据传输过程进行仿真。仿真结果表明,基于QR分解线性最小均方误差算法的性能要优于最大比合并算法。 Channel detection is an indispensable module in massive MIMO communication systems, which often determines the performance of the entire communication system. The main function of channel detection is to deal with the channel matrix obtained by channel estimation to get the signal vector sent by the users. In this paper, we introduce the maximum ratio combining algo-rithm and the linear minimum mean square error detection algorithm based on QR decomposition, and establish the system model to simulate the uplink data transmission. The simulation results show that the performance of the linear minimum mean square error algorithm based on QR decomposition is superior to the maximum ratio combining algorithm.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
195
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信