Bayesian IRT in JAGS: A Tutorial

Kenneth McClure
{"title":"Bayesian IRT in JAGS: A Tutorial","authors":"Kenneth McClure","doi":"10.35566/jbds/v3n1/mccure","DOIUrl":null,"url":null,"abstract":"Item response modeling is common throughout psychology and education in assessments of intelligence, psychopathology, and ability. The current paper provides a tutorial on estimating the two-parameter logistic and graded response models in a Bayesian framework as well as provide an introduction on evaluating convergence and model fit in this framework. Example data are drawn from depression items in the 2017 Wave of the National Longitudinal Survey of Youth and example code is provided for JAGS and implemented through R using the runjags package. The aim of this paper is to provide readers with the necessary information to conduct Bayesian IRT in JAGS.","PeriodicalId":93575,"journal":{"name":"Journal of behavioral data science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of behavioral data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35566/jbds/v3n1/mccure","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Item response modeling is common throughout psychology and education in assessments of intelligence, psychopathology, and ability. The current paper provides a tutorial on estimating the two-parameter logistic and graded response models in a Bayesian framework as well as provide an introduction on evaluating convergence and model fit in this framework. Example data are drawn from depression items in the 2017 Wave of the National Longitudinal Survey of Youth and example code is provided for JAGS and implemented through R using the runjags package. The aim of this paper is to provide readers with the necessary information to conduct Bayesian IRT in JAGS.
JAGS中的贝叶斯IRT:教程
项目反应模型在智力、精神病理和能力评估的心理学和教育中是常见的。本文提供了在贝叶斯框架下估计双参数logistic和梯度响应模型的教程,并介绍了在该框架下评估收敛性和模型拟合。示例数据来自2017年全国青年纵向调查浪潮中的抑郁项目,并为JAGS提供了示例代码,并使用runjags包通过R实现。本文的目的是为读者提供在JAGS中进行贝叶斯IRT的必要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信