{"title":"Proposal of a New Double-Nozzle Technique for In-Gas-Jet Laser Resonance Ionization Spectroscopy","authors":"V. Varentsov","doi":"10.3390/atoms11060088","DOIUrl":null,"url":null,"abstract":"This paper proposes a new double-nozzle technique for in-gas-jet laser resonance ionization spectroscopy. We explored the functionality of this new technique through detailed gas dynamic and Monte Carlo atom-trajectory simulations, in which results are presented and discussed. The results of similar computer simulations for JetRIS setup (as a typical representative of the conventional in-gas-jet technique nowadays) are also presented and discussed. The direct comparison of calculation results for the proposed new technique with the conventional one shows that the double-nozzle technique has many advantages compared with the one used in the JetRIS setup at GSI for future high-resolution laser spectroscopic study of heaviest elements. To fully implement the proposed new technique in all existing (or under construction) setups for in-gas-jet laser resonance ionization spectroscopy, it will be enough to replace the used supersonic nozzle with the miniature double-nozzle device described in the paper.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atoms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/atoms11060088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 1
Abstract
This paper proposes a new double-nozzle technique for in-gas-jet laser resonance ionization spectroscopy. We explored the functionality of this new technique through detailed gas dynamic and Monte Carlo atom-trajectory simulations, in which results are presented and discussed. The results of similar computer simulations for JetRIS setup (as a typical representative of the conventional in-gas-jet technique nowadays) are also presented and discussed. The direct comparison of calculation results for the proposed new technique with the conventional one shows that the double-nozzle technique has many advantages compared with the one used in the JetRIS setup at GSI for future high-resolution laser spectroscopic study of heaviest elements. To fully implement the proposed new technique in all existing (or under construction) setups for in-gas-jet laser resonance ionization spectroscopy, it will be enough to replace the used supersonic nozzle with the miniature double-nozzle device described in the paper.
AtomsPhysics and Astronomy-Nuclear and High Energy Physics
CiteScore
2.70
自引率
22.20%
发文量
128
审稿时长
8 weeks
期刊介绍:
Atoms (ISSN 2218-2004) is an international and cross-disciplinary scholarly journal of scientific studies related to all aspects of the atom. It publishes reviews, regular research papers, and communications; there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. There are, in addition, unique features of this journal: -manuscripts regarding research proposals and research ideas will be particularly welcomed. -computed data, program listings, and files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Scopes: -experimental and theoretical atomic, molecular, and nuclear physics, chemical physics -the study of atoms, molecules, nuclei and their interactions and constituents (protons, neutrons, and electrons) -quantum theory, applications and foundations -microparticles, clusters -exotic systems (muons, quarks, anti-matter) -atomic, molecular, and nuclear spectroscopy and collisions -nuclear energy (fusion and fission), radioactive decay -nuclear magnetic resonance (NMR) and electron spin resonance (ESR), hyperfine interactions -orbitals, valence and bonding behavior -atomic and molecular properties (energy levels, radiative properties, magnetic moments, collisional data) and photon interactions