{"title":"Evaluating a typology of signals for automatic detection of complementarity","authors":"J. W. C. Souza, Ariani Di Felippo","doi":"10.14393/dl52-v16n4a2022-10","DOIUrl":null,"url":null,"abstract":"In a cluster of news texts on the same event, two sentences from different documents might express different multi-document phenomena (redundancy, complementarity, and contradiction). Cross-Document Structure Theory (CST) provides labels to explicitly represent these phenomena. The automatic identification of the multi-document phenomena and their correspondent CST relations is definitely handy for Automatic Multi-Document Summarization since it helps computers understand text meaning. In this paper, we evaluated a typology of (textual) signals for the automatic detection of the CST relations of complementarity (i.e., Historical background, Follow-up and Elaboration) in a multi-document corpus of news texts in Brazilian Portuguese. Using algorithms from different machine-learning paradigms, we obtained classifiers that achieved high general accuracy (higher than 90%), indicating the potential of the signals.","PeriodicalId":53262,"journal":{"name":"Dominios de Lingugem","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dominios de Lingugem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14393/dl52-v16n4a2022-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In a cluster of news texts on the same event, two sentences from different documents might express different multi-document phenomena (redundancy, complementarity, and contradiction). Cross-Document Structure Theory (CST) provides labels to explicitly represent these phenomena. The automatic identification of the multi-document phenomena and their correspondent CST relations is definitely handy for Automatic Multi-Document Summarization since it helps computers understand text meaning. In this paper, we evaluated a typology of (textual) signals for the automatic detection of the CST relations of complementarity (i.e., Historical background, Follow-up and Elaboration) in a multi-document corpus of news texts in Brazilian Portuguese. Using algorithms from different machine-learning paradigms, we obtained classifiers that achieved high general accuracy (higher than 90%), indicating the potential of the signals.