The stability of nonlinear delay integro-differential equations in the sense of Hyers-Ulam

Q3 Mathematics
J. Graef, C. Tunç, Merve Şengun, O. Tunç
{"title":"The stability of nonlinear delay integro-differential equations in the sense of Hyers-Ulam","authors":"J. Graef, C. Tunç, Merve Şengun, O. Tunç","doi":"10.1515/msds-2022-0169","DOIUrl":null,"url":null,"abstract":"Abstract In this study, an initial-value problem for a nonlinear Volterra functional integro-differential equation on a finite interval was considered. The nonlinear term in the equation contains multiple time delays. In addition to giving some new theorems on the existence and uniqueness of solutions to the equation, the authors also prove the Hyers-Ulam-Rassias stability and the Hyers-Ulam stability of the equation. The proofs use several different tools including Banach’s fixed point theorem, the construction of a Picard operator, and an application of Pachpatte’s inequality. An example is provided to illustrate the existence, uniqueness, and stability properties of solutions.","PeriodicalId":30985,"journal":{"name":"Nonautonomous Dynamical Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonautonomous Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/msds-2022-0169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract In this study, an initial-value problem for a nonlinear Volterra functional integro-differential equation on a finite interval was considered. The nonlinear term in the equation contains multiple time delays. In addition to giving some new theorems on the existence and uniqueness of solutions to the equation, the authors also prove the Hyers-Ulam-Rassias stability and the Hyers-Ulam stability of the equation. The proofs use several different tools including Banach’s fixed point theorem, the construction of a Picard operator, and an application of Pachpatte’s inequality. An example is provided to illustrate the existence, uniqueness, and stability properties of solutions.
Hyers-Ulam意义下非线性时滞积分-微分方程的稳定性
研究了有限区间上非线性Volterra泛函积分微分方程的初值问题。方程中的非线性项包含多个时滞。除了给出了该方程解的存在唯一性定理外,还证明了该方程的Hyers-Ulam- rassias稳定性和Hyers-Ulam稳定性。证明使用了几种不同的工具,包括Banach不动点定理,Picard算子的构造,以及Pachpatte不等式的应用。给出了一个例子来说明解的存在唯一性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nonautonomous Dynamical Systems
Nonautonomous Dynamical Systems Mathematics-Analysis
CiteScore
2.10
自引率
0.00%
发文量
12
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信