The homotopy theory of operad subcategories

IF 0.5 4区 数学
Benoit Fresse, Victor Turchin, Thomas Willwacher
{"title":"The homotopy theory of operad subcategories","authors":"Benoit Fresse,&nbsp;Victor Turchin,&nbsp;Thomas Willwacher","doi":"10.1007/s40062-018-0198-2","DOIUrl":null,"url":null,"abstract":"<p>We study the subcategory of topological operads <span>\\({\\mathsf {P}}\\)</span> such that <span>\\({\\mathsf {P}}(0) = *\\)</span> (the category of unitary operads in our terminology). We use that this category inherits a model structure, like the category of all operads in topological spaces, and that the embedding functor of this subcategory of unitary operads into the category of all operads admits a left Quillen adjoint. We prove that the derived functor of this left Quillen adjoint functor induces a left inverse of the derived functor of our category embedding at the homotopy category level. We deduce from this result that the derived mapping spaces associated to our model category of unitary operads are homotopy equivalent to the standard derived operad mapping spaces, which we form in the model category of all operads in topological spaces. We prove that analogous statements hold for the subcategory of <i>k</i>-truncated unitary operads within the model category of all <i>k</i>-truncated operads, for any fixed arity bound <span>\\(k\\ge 1\\)</span>, where a <i>k</i>-truncated operad denotes an operad that is defined up to arity <i>k</i>.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"13 4","pages":"689 - 702"},"PeriodicalIF":0.5000,"publicationDate":"2018-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-018-0198-2","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-018-0198-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We study the subcategory of topological operads \({\mathsf {P}}\) such that \({\mathsf {P}}(0) = *\) (the category of unitary operads in our terminology). We use that this category inherits a model structure, like the category of all operads in topological spaces, and that the embedding functor of this subcategory of unitary operads into the category of all operads admits a left Quillen adjoint. We prove that the derived functor of this left Quillen adjoint functor induces a left inverse of the derived functor of our category embedding at the homotopy category level. We deduce from this result that the derived mapping spaces associated to our model category of unitary operads are homotopy equivalent to the standard derived operad mapping spaces, which we form in the model category of all operads in topological spaces. We prove that analogous statements hold for the subcategory of k-truncated unitary operads within the model category of all k-truncated operads, for any fixed arity bound \(k\ge 1\), where a k-truncated operad denotes an operad that is defined up to arity k.

可操作子范畴的同伦论
我们研究拓扑操作符的子范畴\({\mathsf {P}}\),使得\({\mathsf {P}}(0) = *\)(在我们的术语中是酉操作符的范畴)。我们使用这个范畴继承了一个模型结构,就像拓扑空间中所有操作数的范畴一样,并且这个酉操作数子范畴嵌入到所有操作数范畴的函子允许一个左Quillen伴随子。我们证明了这个左Quillen伴随函子的派生函子在同伦范畴水平上推导出我们范畴嵌入的派生函子的左逆。由此我们推导出与一元操作数模型范畴相关的派生映射空间与我们在拓扑空间中所有操作数的模型范畴中形成的标准派生操作数映射空间是同伦等价的。我们证明了在所有k截断的操作数的模型范畴内的k截断的酉操作数的子范畴,对于任何固定的密度界\(k\ge 1\)都成立类似的命题,其中k截断的操作数表示定义到密度k的操作数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信