A Block Refinement of the Green-Puig Parameterization of the Isomorphism Types of Indecomposable Modules

Pub Date : 2019-04-01 DOI:10.18910/72315
M. E. Harris
{"title":"A Block Refinement of the Green-Puig Parameterization of the Isomorphism Types of Indecomposable Modules","authors":"M. E. Harris","doi":"10.18910/72315","DOIUrl":null,"url":null,"abstract":"Let p be a prime integer, let  be a commutative complete local Noetherian ring with an algebraically closed residue field k of charateristic p and letG be a finite group. Let P be a p-subgroup of G and let X be an indecomposable P-module with vertex P. Let Λ(G, P, X) denote a set of representatives for the isomorphism classes of indecomposable G-modules with vertex-source pair (P, X) (so that Λ(G, P, X) is a finite set by the Green correspondence). As mentioned in [5, Notes on Section 26], L. Puig asserted that a defect multiplicity module determined by (P, X) can be used to obtain an extended parameterization of Λ(G, P, X). In [5, Proposition 26.3], J. Thévenaz completed this program under the hypotheses that X is -free. Here we use the methods of proof of [5, Theorem 26.3] to show that the -free hypothesis on X is superfluous. (M. Linckelmann has also proved this, cf. [3]). Let B be a block of G. Then we obtain a corresponding paramaterization of the (G)B-modules in Λ(G, P, X).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/72315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let p be a prime integer, let  be a commutative complete local Noetherian ring with an algebraically closed residue field k of charateristic p and letG be a finite group. Let P be a p-subgroup of G and let X be an indecomposable P-module with vertex P. Let Λ(G, P, X) denote a set of representatives for the isomorphism classes of indecomposable G-modules with vertex-source pair (P, X) (so that Λ(G, P, X) is a finite set by the Green correspondence). As mentioned in [5, Notes on Section 26], L. Puig asserted that a defect multiplicity module determined by (P, X) can be used to obtain an extended parameterization of Λ(G, P, X). In [5, Proposition 26.3], J. Thévenaz completed this program under the hypotheses that X is -free. Here we use the methods of proof of [5, Theorem 26.3] to show that the -free hypothesis on X is superfluous. (M. Linckelmann has also proved this, cf. [3]). Let B be a block of G. Then we obtain a corresponding paramaterization of the (G)B-modules in Λ(G, P, X).
分享
查看原文
不可分解模同构类型的Green Puig参数化的块精化
设p是素数,设 是具有特征p的代数闭余域k的交换完全局部Noetherian环,并且让G是有限群。设P是G的P-子群,设X是不可分解的设∧(G,P,X)表示不可分解同构类的一组表示具有顶点-源对(P,X)的G-模(使得∧(G,P,X)是Green对应关系的有限集)。如[5,第26节注释]中所述,L.Puig断言,由(P,X)确定的缺陷多重性模可用于获得∧(G,P,X)的扩展参数化。在[5],命题26.3]中,J.Thévenaz在假设X是-自由的在这里,我们使用[5],定理26.3]的证明方法来证明-关于X的自由假设是多余的。(M.Linckelmann也证明了这一点,参见[3])。设B是G.然后我们得到了(G) ∧(G,P,X)中的B-模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信