Modeling of Object Monitoring Using 3D Cellular Automata

IF 0.3 Q4 ENERGY & FUELS
I. Zakharchenko, A. Tristán, N. Chornogor, P. Berdnik, G. Kalashnyk, A. Timochko, A. Zalevskii, O. Dmitriiev
{"title":"Modeling of Object Monitoring Using 3D Cellular Automata","authors":"I. Zakharchenko, A. Tristán, N. Chornogor, P. Berdnik, G. Kalashnyk, A. Timochko, A. Zalevskii, O. Dmitriiev","doi":"10.52254/1857-0070.2022.4-56.06","DOIUrl":null,"url":null,"abstract":"The purpose of this work is to develop a formal model for describing the properties of the environment for the functioning of unmanned aerial vehicles and to increase the speed of calculating the trajectory of their flight when monitoring critical infrastructure objects based on the mathematical apparatus of 3D cellular automata. This goal is achieved by solving the following problems: developing a method for describing the operating environment of unmanned aerial vehicles based on 3D cellular automata, developing a method for calculating the flight path of unmanned aerial vehicles. The construction of formal models is based on the apparatus of 3D cellular automata. The most significant results are a formalized description of the space, properties of zones and objects that restrict movement, as well as the development of a method for modeling the flight of an unmanned aerial vehicle in space when solving the monitoring problem, which will increase the speed of calculating the flight path. The significance of the results obtained lies in solving the complex problem of calculating the trajectory of movement of unmanned aerial vehicles for monitoring critical infrastructure objects using the apparatus of 3D cellular automata. The conducted studies have shown the effectiveness of using 3D - cellular automata to solve the problems of finding flight paths when monitoring critical infrastructure objects in various conditions. The proposed approach to the implementation of cellular automata will allow creating an effective monitoring system.","PeriodicalId":41974,"journal":{"name":"Problemele Energeticii Regionale","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problemele Energeticii Regionale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52254/1857-0070.2022.4-56.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this work is to develop a formal model for describing the properties of the environment for the functioning of unmanned aerial vehicles and to increase the speed of calculating the trajectory of their flight when monitoring critical infrastructure objects based on the mathematical apparatus of 3D cellular automata. This goal is achieved by solving the following problems: developing a method for describing the operating environment of unmanned aerial vehicles based on 3D cellular automata, developing a method for calculating the flight path of unmanned aerial vehicles. The construction of formal models is based on the apparatus of 3D cellular automata. The most significant results are a formalized description of the space, properties of zones and objects that restrict movement, as well as the development of a method for modeling the flight of an unmanned aerial vehicle in space when solving the monitoring problem, which will increase the speed of calculating the flight path. The significance of the results obtained lies in solving the complex problem of calculating the trajectory of movement of unmanned aerial vehicles for monitoring critical infrastructure objects using the apparatus of 3D cellular automata. The conducted studies have shown the effectiveness of using 3D - cellular automata to solve the problems of finding flight paths when monitoring critical infrastructure objects in various conditions. The proposed approach to the implementation of cellular automata will allow creating an effective monitoring system.
基于三维元胞自动机的目标监测建模
这项工作的目的是开发一个正式的模型,用于描述无人机运行的环境特性,并在基于3D细胞自动机的数学装置监测关键基础设施对象时提高计算其飞行轨迹的速度。这一目标是通过解决以下问题来实现的:开发一种基于三维细胞自动机的无人机操作环境描述方法,开发一种无人机飞行路径计算方法。形式模型的构建是基于三维细胞自动机的装置。最重要的结果是对空间、限制移动的区域和物体的特性进行了形式化描述,以及在解决监控问题时开发了一种无人机在太空中飞行的建模方法,这将提高飞行路径的计算速度。所获得的结果的意义在于解决了使用三维元胞自动机设备计算用于监控关键基础设施对象的无人机运动轨迹的复杂问题。所进行的研究表明,使用三维元胞自动机来解决在各种条件下监测关键基础设施对象时寻找飞行路径的问题是有效的。所提出的实现细胞自动机的方法将允许创建一个有效的监控系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
38
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信