{"title":"On Hardy kernels as reproducing kernels","authors":"J. Oliva-Maza","doi":"10.4153/S0008439522000406","DOIUrl":null,"url":null,"abstract":"Abstract Hardy kernels are a useful tool to define integral operators on Hilbertian spaces like \n$L^2(\\mathbb R^+)$\n or \n$H^2(\\mathbb C^+)$\n . These kernels entail an algebraic \n$L^1$\n -structure which is used in this work to study the range spaces of those operators as reproducing kernel Hilbert spaces. We obtain their reproducing kernels, which in the \n$L^2(\\mathbb R^+)$\n case turn out to be Hardy kernels as well. In the \n$H^2(\\mathbb C^+)$\n scenario, the reproducing kernels are given by holomorphic extensions of Hardy kernels. Other results presented here are theorems of Paley–Wiener type, and a connection with one-sided Hilbert transforms.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/S0008439522000406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Hardy kernels are a useful tool to define integral operators on Hilbertian spaces like
$L^2(\mathbb R^+)$
or
$H^2(\mathbb C^+)$
. These kernels entail an algebraic
$L^1$
-structure which is used in this work to study the range spaces of those operators as reproducing kernel Hilbert spaces. We obtain their reproducing kernels, which in the
$L^2(\mathbb R^+)$
case turn out to be Hardy kernels as well. In the
$H^2(\mathbb C^+)$
scenario, the reproducing kernels are given by holomorphic extensions of Hardy kernels. Other results presented here are theorems of Paley–Wiener type, and a connection with one-sided Hilbert transforms.