A. Brunerová, M. Müller, G. Gürdil, V. Šleger, M. Brožek
{"title":"Analysis of the physical-mechanical properties of a pelleted chicken litter organic fertiliser","authors":"A. Brunerová, M. Müller, G. Gürdil, V. Šleger, M. Brožek","doi":"10.17221/41/2020-rae","DOIUrl":null,"url":null,"abstract":"Pelleted fertiliser production represents improvements in fertiliser management and ensures several benefits, such as a more accurate dosing (less applications), the slow-release of long-lasting nutrients, the possible application during the whole year, easier storage and transportation and better separation of fertilisers and pesticides. The present research investigated the physical-mechanical properties of a pelleted chicken litter organic fertiliser. The pellet samples' particle density ρ (kg·m–3), mechanical durability DU (%), compressive strengths in the cleft σc (N·mm–1) and in simple pressure σp (MPa) were investigated. The last two indicators, σc and σp, demonstrated the pellets' resistance to the compressive stress. The resulting values proved ρ = 1 289.73 kg·m–3, DU = 95.5%, σc = 58.61 N·mm–1 and σp = 20.02 MPa, while all the results were evaluated positively. The observed level of the DU (%) did not achieve the mandatory level for the commercial production of pellets (DU = 97.5%), however, such a level is stated for a pellet solid biofuel intended for energy production. Therefore, the achieved level of the DU (%) represents a satisfactory result within the investigated pellet samples' mechanical quality. In general, the viability and practicability of chicken litter pellet production was proven, as well as, the suitability of such a feedstock for pellet production. Moreover, the observed results proved a high level of the investigated pellet samples' mechanical quality.","PeriodicalId":20906,"journal":{"name":"Research in Agricultural Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Agricultural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17221/41/2020-rae","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2
Abstract
Pelleted fertiliser production represents improvements in fertiliser management and ensures several benefits, such as a more accurate dosing (less applications), the slow-release of long-lasting nutrients, the possible application during the whole year, easier storage and transportation and better separation of fertilisers and pesticides. The present research investigated the physical-mechanical properties of a pelleted chicken litter organic fertiliser. The pellet samples' particle density ρ (kg·m–3), mechanical durability DU (%), compressive strengths in the cleft σc (N·mm–1) and in simple pressure σp (MPa) were investigated. The last two indicators, σc and σp, demonstrated the pellets' resistance to the compressive stress. The resulting values proved ρ = 1 289.73 kg·m–3, DU = 95.5%, σc = 58.61 N·mm–1 and σp = 20.02 MPa, while all the results were evaluated positively. The observed level of the DU (%) did not achieve the mandatory level for the commercial production of pellets (DU = 97.5%), however, such a level is stated for a pellet solid biofuel intended for energy production. Therefore, the achieved level of the DU (%) represents a satisfactory result within the investigated pellet samples' mechanical quality. In general, the viability and practicability of chicken litter pellet production was proven, as well as, the suitability of such a feedstock for pellet production. Moreover, the observed results proved a high level of the investigated pellet samples' mechanical quality.
期刊介绍:
Original scientific papers, short communications, information, and studies covering all areas of agricultural engineering, agricultural technology, processing of agricultural products, countryside buildings and related problems from ecology, energetics, economy, ergonomy and applied physics and chemistry. Papers are published in English.