Felix Atuhaire, B. Egger, Tinashe Ernest Mutsvangwa
{"title":"Evaluating 3D human face reconstruction from a frontal 2D image, focusing on facial regions associated with foetal alcohol syndrome","authors":"Felix Atuhaire, B. Egger, Tinashe Ernest Mutsvangwa","doi":"10.17159/sajs.2023/12064","DOIUrl":null,"url":null,"abstract":"Foetal alcohol syndrome (FAS) is a preventable condition caused by maternal alcohol consumption during pregnancy. The FAS facial phenotype is an important factor for diagnosis, alongside central nervous system impairments and growth abnormalities. Current methods for analysing the FAS facial phenotype rely on 3D facial image data, obtained from costly and complex surface scanning devices. An alternative is to use 2D images, which are easy to acquire with a digital camera or smart phone. However, 2D images lack the geometric accuracy required for accurate facial shape analysis. Our research offers a solution through the reconstruction of 3D human faces from single or multiple 2D images. We have developed a framework for evaluating 3D human face reconstruction from a single-input 2D image using a 3D face model for potential use in FAS assessment. We first built a generative morphable model of the face from a database of registered 3D face scans with diverse skin tones. Then we applied this model to reconstruct 3D face surfaces from single frontal images using a model-driven sampling algorithm. The accuracy of the predicted 3D face shapes was evaluated in terms of surface reconstruction error and the accuracy of FAS-relevant landmark locations and distances. Results show an average root mean square error of 2.62 mm. Our framework has the potential to estimate 3D landmark positions for parts of the face associated with the FAS facial phenotype. Future work aims to improve on the accuracy and adapt the approach for use in clinical settings.","PeriodicalId":21928,"journal":{"name":"South African Journal of Science","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.17159/sajs.2023/12064","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Foetal alcohol syndrome (FAS) is a preventable condition caused by maternal alcohol consumption during pregnancy. The FAS facial phenotype is an important factor for diagnosis, alongside central nervous system impairments and growth abnormalities. Current methods for analysing the FAS facial phenotype rely on 3D facial image data, obtained from costly and complex surface scanning devices. An alternative is to use 2D images, which are easy to acquire with a digital camera or smart phone. However, 2D images lack the geometric accuracy required for accurate facial shape analysis. Our research offers a solution through the reconstruction of 3D human faces from single or multiple 2D images. We have developed a framework for evaluating 3D human face reconstruction from a single-input 2D image using a 3D face model for potential use in FAS assessment. We first built a generative morphable model of the face from a database of registered 3D face scans with diverse skin tones. Then we applied this model to reconstruct 3D face surfaces from single frontal images using a model-driven sampling algorithm. The accuracy of the predicted 3D face shapes was evaluated in terms of surface reconstruction error and the accuracy of FAS-relevant landmark locations and distances. Results show an average root mean square error of 2.62 mm. Our framework has the potential to estimate 3D landmark positions for parts of the face associated with the FAS facial phenotype. Future work aims to improve on the accuracy and adapt the approach for use in clinical settings.
期刊介绍:
The South African Journal of Science is a multidisciplinary journal published bimonthly by the Academy of Science of South Africa. Our mandate is to publish original research with an interdisciplinary or regional focus, which will interest readers from more than one discipline, and to provide a forum for discussion of news and developments in research and higher education. Authors are requested to write their papers and reports in a manner and style that is intelligible to specialists and non-specialists alike. Research contributions, which are peer reviewed, are of three kinds: Review Articles, Research Articles and Research Letters.