Numerical solution for solving fractional parabolic partial differential equations

IF 1.1 Q2 MATHEMATICS, APPLIED
J. Rashidinia, Elham Mohmedi
{"title":"Numerical solution for solving fractional parabolic partial differential equations","authors":"J. Rashidinia, Elham Mohmedi","doi":"10.22034/CMDE.2021.41150.1787","DOIUrl":null,"url":null,"abstract":"In this paper, A reliable numerical scheme is developed and reviewed in order to obtain approximate solution of time fractional parabolic partial differential equations. The introduced scheme is based on Legendre tau spectral approximation and the time fractional derivative is employed in the Caputo sense. TheL2convergence analysis of the numerical method is analyzed. Numerical results for different examples are examined to verify the accuracy of spectral method and justification the theoretical analysis, and to compare with other existing methods in the literatures","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.41150.1787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, A reliable numerical scheme is developed and reviewed in order to obtain approximate solution of time fractional parabolic partial differential equations. The introduced scheme is based on Legendre tau spectral approximation and the time fractional derivative is employed in the Caputo sense. TheL2convergence analysis of the numerical method is analyzed. Numerical results for different examples are examined to verify the accuracy of spectral method and justification the theoretical analysis, and to compare with other existing methods in the literatures
分数阶抛物型偏微分方程的数值解法
本文给出了时间分数阶抛物型偏微分方程近似解的一种可靠的数值格式。所引入的方案是基于勒让德谱近似,并在卡普托意义上使用时间分数阶导数。对数值方法的收敛性进行了分析。通过不同算例的数值计算,验证了谱法的准确性和理论分析的合理性,并与文献中已有的方法进行了比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信