R. A. Yalçın, E. Blandre, K. Joulain, J. Drévillon
{"title":"Colored radiative cooling coatings with fluorescence","authors":"R. A. Yalçın, E. Blandre, K. Joulain, J. Drévillon","doi":"10.1117/1.JPE.11.032104","DOIUrl":null,"url":null,"abstract":"Abstract. We propose structures that are colored with photoluminescence materials for radiative cooling applications. Using simulations, we show that implementing photoluminescence materials provides color to the structures by shifting electromagnetic energy between spectrums. Resulting additional solar energy absorption due to coloration is lower with photoluminescence compared to the traditional materials used for spectrally selective absorption, such as pigments and nanosized metallic resonators. Thermal and visual performance of different types of photoluminescence materials such as phosphors and quantum dots are investigated. Effects of Stokes shift and quantum yield, which are the photoluminescence properties that characterize the energy shift between spectrums, are quantified.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"11 1","pages":"032104 - 032104"},"PeriodicalIF":1.5000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photonics for Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.JPE.11.032104","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8
Abstract
Abstract. We propose structures that are colored with photoluminescence materials for radiative cooling applications. Using simulations, we show that implementing photoluminescence materials provides color to the structures by shifting electromagnetic energy between spectrums. Resulting additional solar energy absorption due to coloration is lower with photoluminescence compared to the traditional materials used for spectrally selective absorption, such as pigments and nanosized metallic resonators. Thermal and visual performance of different types of photoluminescence materials such as phosphors and quantum dots are investigated. Effects of Stokes shift and quantum yield, which are the photoluminescence properties that characterize the energy shift between spectrums, are quantified.
期刊介绍:
The Journal of Photonics for Energy publishes peer-reviewed papers covering fundamental and applied research areas focused on the applications of photonics for renewable energy harvesting, conversion, storage, distribution, monitoring, consumption, and efficient usage.