{"title":"Design and analysis of a multi-configuration wheel-leg hybrid drive robot machine","authors":"Feng Hou, Jiwei Yuan, Kunpeng Li, Zhouyi Wang","doi":"10.1177/17298806231163828","DOIUrl":null,"url":null,"abstract":"The use of robots to perform tasks in extreme environments instead of humans has gradually become important. For wider applications, robots should be able to adapt to complex environments, such as typical height/width-restricted motion spaces, raised obstacles, and ravines. The structure is the foundation of robot to move and perform tasks. In this study, a variable-attitude robot mechanism is designed and analyzed. With the link leg drive and Mecanum wheel drive, the robot has various configurations and omnidirectional motion capabilities. First, the design and analysis of the wheel drive system are performed, and the mapping relationship between the velocity of the robot and the velocity of the Mecanum wheel is clarified. Second, kinematics of the linkage drive system is analyzed, including the motion space, trajectory characteristics, and the effect of variable axle spacing on the robot motion performance. Subsequently, a simulation is used to verify the rationality of the three motion modes of the robot: walking, wheel drive, and hybrid drive. Finally, a motion simulation of several typical configuration changes in the robot is observed, and the feasibility of the robot mechanism to adapt to a complex environment is verified. This study contributes to the development and application of special advanced robots.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806231163828","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1
Abstract
The use of robots to perform tasks in extreme environments instead of humans has gradually become important. For wider applications, robots should be able to adapt to complex environments, such as typical height/width-restricted motion spaces, raised obstacles, and ravines. The structure is the foundation of robot to move and perform tasks. In this study, a variable-attitude robot mechanism is designed and analyzed. With the link leg drive and Mecanum wheel drive, the robot has various configurations and omnidirectional motion capabilities. First, the design and analysis of the wheel drive system are performed, and the mapping relationship between the velocity of the robot and the velocity of the Mecanum wheel is clarified. Second, kinematics of the linkage drive system is analyzed, including the motion space, trajectory characteristics, and the effect of variable axle spacing on the robot motion performance. Subsequently, a simulation is used to verify the rationality of the three motion modes of the robot: walking, wheel drive, and hybrid drive. Finally, a motion simulation of several typical configuration changes in the robot is observed, and the feasibility of the robot mechanism to adapt to a complex environment is verified. This study contributes to the development and application of special advanced robots.
期刊介绍:
International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.