{"title":"The eventual paracanonical map of a variety of maximal Albanese dimension","authors":"G. Farkas","doi":"10.14231/AG-2019-014","DOIUrl":null,"url":null,"abstract":"Let $X$ be a smooth complex projective variety such that the Albanese map of $X$ is generically finite onto its image. Here we study the so-called eventual $m$-paracanonical map of $X$ (when $m=1$ we also assume $\\chi(K_X)>0$). We show that for $m=1$ this map behaves in a similar way to the canonical map of a surface of general type, while it is birational for $m>1$. We also describe it explicitly in several examples.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/AG-2019-014","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Let $X$ be a smooth complex projective variety such that the Albanese map of $X$ is generically finite onto its image. Here we study the so-called eventual $m$-paracanonical map of $X$ (when $m=1$ we also assume $\chi(K_X)>0$). We show that for $m=1$ this map behaves in a similar way to the canonical map of a surface of general type, while it is birational for $m>1$. We also describe it explicitly in several examples.
期刊介绍:
This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.